ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-04-16
    Description: When contacts are first forming in the developing nervous system, many neurons generate spontaneous activity that has been hypothesized to shape appropriately patterned connections. In Mustela putorius furo, monocular intraocular blockade of spontaneous retinal waves of action potentials by cholinergic agents altered the subsequent eye-specific lamination pattern of the lateral geniculate nucleus (LGN). The projection from the active retina was greatly expanded into territory normally belonging to the other eye, and the projection from the inactive retina was substantially reduced. Thus, interocular competition driven by endogenous retinal activity determines the pattern of eye-specific connections from retina to LGN, demonstrating that spontaneous activity can produce highly stereotyped patterns of connections before the onset of visual experience.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Penn, A A -- Riquelme, P A -- Feller, M B -- Shatz, C J -- MH 98108/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 27;279(5359):2108-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. apenn@uclink2.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9516112" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Animals ; Animals, Newborn ; Axons/physiology ; Bicyclo Compounds, Heterocyclic/pharmacology ; Bungarotoxins/pharmacology ; *Conotoxins ; Ferrets ; Geniculate Bodies/*anatomy & histology/growth & development ; Microspheres ; Nicotinic Agonists/pharmacology ; Peptides/pharmacology ; Pyridines/pharmacology ; Retina/drug effects/*physiology ; Retinal Ganglion Cells/drug effects/*physiology ; *Visual Pathways
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-12-16
    Description: Class I major histocompatibility complex (class I MHC) molecules, known to be important for immune responses to antigen, are expressed also by neurons that undergo activity-dependent, long-term structural and synaptic modifications. Here, we show that in mice genetically deficient for cell surface class I MHC or for a class I MHC receptor component, CD3zeta, refinement of connections between retina and central targets during development is incomplete. In the hippocampus of adult mutants, N-methyl-D-aspartate receptor-dependent long-term potentiation (LTP) is enhanced, and long-term depression (LTD) is absent. Specific class I MHC messenger RNAs are expressed by distinct mosaics of neurons, reflecting a potential for diverse neuronal functions. These results demonstrate an important role for these molecules in the activity-dependent remodeling and plasticity of connections in the developing and mature mammalian central nervous system (CNS).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175035/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175035/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huh, G S -- Boulanger, L M -- Du, H -- Riquelme, P A -- Brotz, T M -- Shatz, C J -- 1F32EY07016/EY/NEI NIH HHS/ -- EY06912/EY/NEI NIH HHS/ -- F32 EY007016/EY/NEI NIH HHS/ -- F32 EY007016-02/EY/NEI NIH HHS/ -- F32 EY007016-03/EY/NEI NIH HHS/ -- MH48108/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2155-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. gshuh@alum.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118151" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD3/genetics/*physiology ; Brain/growth & development/*physiology ; Excitatory Postsynaptic Potentials ; Gene Expression Profiling ; Genes, MHC Class I ; Geniculate Bodies/physiology ; Hippocampus/growth & development/physiology ; Histocompatibility Antigens Class I/genetics/*physiology ; In Situ Hybridization ; Long-Term Potentiation ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Mutant Strains ; Neural Pathways ; *Neuronal Plasticity ; Neurons/*physiology ; Receptors, GABA-A/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Retina/growth & development/physiology ; Retinal Ganglion Cells/physiology ; Signal Transduction ; Synapses/*physiology ; Synaptic Transmission ; Visual Pathways
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...