ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2023-05-15
    Description: In the energy sector, few topics, if any, are more hyped than hydrogen. Countries develop hydrogen strategies to provide a perspective for hydrogen production and use in order to meet climate-neutrality goals. However, in this topical field the role of water is less accentuated. Hence, in this study, we seek to map the interrelations between the water and wastewater sector on the one hand and the hydrogen sector on the other hand, before reflecting upon our findings in a country case study. We chose the Hashemite Kingdom of Jordan because (i) hydrogen is politically discussed not least due to its high potentials for solar PV, and (ii) Jordan is water stressed - definitely a bad precondition for water-splitting electrolyzers. This research is based on a project called the German-Jordanian Water-Hydrogen-Dialogue (GJWHD), which started with comprehensive desk research mostly to map the intersectoral relations and to scope the situation in Jordan. Then, we carried out two expert workshops in Wuppertal, Germany, and Amman, Jordan, in order to further discuss the nexus by inviting a diverse set of stakeholders. The mapping exercise shows various options for hydrogen production and opportunities for planning hydrogen projects in water-scarce contexts such as Jordan.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-05
    Description: This paper examines the current and prospective greenhouse gas (GHG) emissions of e-fuels produced via electrolysis and Fischer-Tropsch synthesis (FTS) for the years 2021, 2030, and 2050 for use in Germany. The GHG emissions are determined by a scenario approach as a combination of a literature-based top-down and bottom-up approach. Considered process steps are the provision of feedstocks, electrolysis (via solid oxide co-electrolysis; SOEC), synthesis (via Fischer-Tropsch synthesis; FTS), e-crude refining, eventual transport to, and use in Germany. The results indicate that the current GHG emissions for e-fuel production in the exemplary export countries Saudi Arabia and Chile are above those of conventional fuels. Scenarios for the production in Germany lead to current GHG emissions of 2.78-3.47 kgCO2-eq/L e-fuel in 2021 as the reference year and 0.064-0.082 kgCO2-eq/L e-fuel in 2050. With a share of 58-96%, according to the respective scenario, the electrolysis is the main determinant of the GHG emissions in the production process. The use of additional renewable energy during the production process in combination with direct air capture (DAC) are the main leverages to reduce GHG emissions.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...