ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-07
    Description: Full-scale flight performance predictions can be made using CFD or a combination of CFD and analytical skin-friction predictions. However, no matter what method is used to obtain full-scale flight performance predictions knowledge of the boundary layer state is critical. The implementation of CFD codes solving the Navier-Stokes equations to obtain these predictions is still a time consuming, expensive process. In addition, to ultimately obtain accurate performance predictions the transition location must be fixed in the CFD model. An example, using the M2.4-7A geometry, of the change in Navier-Stokes solution with changes in transition and in turbulence model will be shown. Oil flow visualization using the M2.4-7A 4.0% scale model in the 14'x22' wind tunnel shows that fixing transition at 10% x/c in the CFD model best captures the flow physics of the wing flow field. A less costly method of obtaining full-scale performance predictions is the use of non-linear Euler codes or linear CFD codes, such as panel methods, combined with analytical skin-friction predictions. Again, knowledge of the boundary layer state is critical to the accurate determination of full-scale flight performance. Boundary layer transition detection has been performed at 0.3 and 0.9 Mach numbers over an extensive Reynolds number range using the 2.2% scale Reference H model in the NTF. A temperature sensitive paint system was used to determine the boundary layer state for these conditions. Data was obtained for three configurations: the baseline, undeflected flaps configuration; the transonic cruise configuration; and, the high-lift configuration. It was determined that at low Reynolds number conditions, in the 8 to 10 million Reynolds number range, the baseline configuration has extensive regions of laminar flow, in fact significantly more than analytical skin-friction methods predict. This configuration is fully turbulent at about 30 million Reynolds number for both 0.3 and 0.9, Mach numbers. Both the transonic cruise and the high-lift configurations were fully turbulent aft of the leading-edge flap hingeline at all Reynolds numbers.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 2; 1751-1772; NASA/CP-1999-209691/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A need for low-speed, high Reynolds number test capabilities has been identified for the design and development of advanced subsonic transport high-lift systems. In support of this need, multiple investigations have been conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center to develop a semi-span testing capability that will provide the low-speed, flight Reynolds number data currently unattainable using conventional sting-mounted, full-span models. Although a semi-span testing capability will effectively double the Reynolds number capability over full-span models, it does come at the expense of contending with the issue of the interaction of the flow over the model with the windtunnel wall boundary layer. To address this issue the size and shape of the semi-span model mounting geometry have been investigated, and the results are presented herein. The cryogenic operating environment of the NTF produced another semi-span test technique issue in that varying thermal gradients have developed on the large semi-span balance. The suspected cause of these thermal gradients and methods to eliminate them are presented. Data are also presented that demonstrate the successful elimination of these varying thermal gradients during cryogenic operations.
    Keywords: Research and Support Facilities (Air)
    Type: AIAA Paper 2001-0759 , Aerospace Sciences; Jan 08, 2001 - Jan 11, 2001; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...