ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-12-01
    Print ISSN: 0169-5983
    Electronic ISSN: 1873-7005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-12-01
    Print ISSN: 0169-5983
    Electronic ISSN: 1873-7005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The phenomenon of forced unsteady separation and eruption of boundary-layer vorticity is a highly-complex, high-Reynolds number flow phenomenon, which abruptly leads to the formation of a dynamic stall vortex as demonstrated earlier by the authors for a NACA 0015 airfoil undergoing constant rate pitch-up motion. This, as well as the results of other researchers, have convincingly demonstrated a complex vortical structure within the state of unsteady separation prior to the evolution of dynamic stall. This phenomenon of vortex eruption, although observed in studying dynamic stall phenomena, is also associated with transition from laminar to turbulence flow and its generic nature has been stressed by many researchers including the present investigators. An unsteady Navier-Stokes (NS) analysis is developed for arbitrarily maneuvering bodies using velocity-vorticity variables; this formulation is nearly form-invariant under a generalized non-inertial coordinate transformation. A fully-implicit uniformly second-order accurate method is used, with the nonlinear convective terms approximated using a biased third-order upwind differencing scheme to be able to simulate higher-Re flows. No explicit artificial dissipation is added. The numerical method is fully vectorized and currently achieves a computational index of 7 micro-seconds per time step per mesh point, using a single processor on a CRAY Y-MP. The simulation results show that the energetic free shear from the leading edge is responsible for the wall viscous layer to abruptly erupt near the center of the counterclockwise rotating eddy in the unsteady boundary layer. Primary, secondary, tertiary and quaternary vortices have been observed before the dynamic stall vortex evolves and gathers its maximum strength. This study will discuss the simulation results of Reynolds number up to Re = 45,000 and will also discuss the efforts of initial acceleration in a specific maneuver, on the evolution of the stall vortex.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: California State Univ., The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows; 10 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Unsteady separated flow in an axisymmetric configuration is investigated, with the objective of analyzing vortex-ring formation and break-up and the ensuing interactions believed to be leading to breakdown of laminar flow. The model problem considered is an idealized representation of a combustor with a centerbody. Direct solution of the time-dependent incompressible Navier-Stokes equations is employed, with central-differencing for all spatial derivatives, to determine the response of this flow for Re = 2000, 5000 and 10,000. The last case revealed a rather novel unsteady vortex-ring interaction phenomenon. This case has been further investigated using third-order accurate upwind differencing for the convective terms. The flow is interrogated carefully by examining the corresponding instantaneous vorticity, stream-function and velocity fields, as well as by tracking mass-less marker particles in some of the critical regions. Such detailed examination is deemed essential, prior to assigning fundamental physical relevance to the observed vortex-interaction phenomenon.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 91-0548
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The conservative form of the unsteady Navier-Stokes equations in terms of vorticity and stream function in generalized curvilinear coordinates are used to analyze the flow structure of steady separation and unsteady flow with massive separation. The numerical method solves the discretized equations using an ADI-BGE method. The method is applied to a symmetric 12 percent thick Joukowski airfoil. A conformal clustered grid is generated; several 1-D stretching transformations are used to obtain a grid that attempts to resolve many of the multiple scales of the unsteady flow with massive separation, while maintaining the transformation metrics to be smooth and continuous in the entire flow field. Detailed numerical results are obtained for three flow configurations (1) Re = 1000, alpha = 5 deg., (2) Re =1000, alpha = 15 deg., (3) Re = 10,000, alpha = 5 deg. No artificial dissipation was added; however, lack of a fine grid in the normal direction has presently led to results which are considered qualitative, especially for case (3).
    Keywords: AERODYNAMICS
    Type: NASA-CR-179823 , NAS 1.26:179823
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.
    Keywords: AERODYNAMICS
    Type: NASA-CR-177273 , NAS 1.26:177273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Among the new significant aspects of the present work are: (1) the treatment of the far-field boundary; (2) the use of C-grid topology, with the branch-cut singularity treated analytically; (3) evaluation of the effect of the envelope of prevailing initial states, and finally; (4) the ability to employ streakline/pathline 'visualization' to probe the unsteady features prevailing in vortex-dominated flows. The far-field boundary is placed at infinity, using appropriate grid stretching. This contributes to the accuracy of the solutions, but raised a number of important issues which needed to be resolved; this includes determining the equivalent time-dependent circulation for the pitching airfoil. A secondary counter-clockwise vortex erupts from within the boundary layer and immediately pinches off the energetic leading-edge shear layer which then, through hydrodynamic instability, rolls up into the dynamic stall vortex. The streakline/pathline visualization serves to provide information for insight into the physics of the unsteady separated flow.
    Keywords: AERODYNAMICS
    Type: NASA. Ames Research Center, Physics of Forced Unsteady Separation; p 129-147
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A direct, implicit, numerical solution algorithm, with second-order accuracy in space and time, is constructed for the three-dimensional unsteady incompressible Navier-Stokes equations formulated in terms of velocity and vorticity, using generalized orthogonal coordinates to achieve the accurate solution of complex viscous flow configurations. A numerically stable, efficient, direct inversion procedure is developed for the computationally intensive divergence-curl elliptic velocity problem. This overdetermined partial differential operator is first formulated as a uniquely determined, nonsingular matrix-vector problem; this aspect of the procedure is a unique feature of the present analysis. The three-dimensional vorticity-transport equation is solved by a modified factorization technique which completely eliminates the need for any block-matrix inversions and only scalar tridiagonal matrices need to be inverted. The method is applied to the test problem of the three-dimensional flow within a shear-driven cubical box. Coherent streamwise vortex structures are observed within the steady-state flow at Re = 100.
    Keywords: NUMERICAL ANALYSIS
    Type: AIAA PAPER 87-1139
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: The unsteady incompressible Navier-Stokes equations are formulated in terms of vorticity and stream function in generalized curvilinear orthogonal coordinates to facilitiate analysis of flow configurations with general geometries. The numerical method developed solves the conservative form of the transport equation using the alternating-direction implicit method, whereas the stream-function equation is solved by direct block Gaussian elimination. The method is applied to a model problem of flow over a back-step in a doubly infinite channel, using clustered conformal coordinates. One-dimensional stretching functions, dependent on the Reynolds number and the asymptotic behavior of the flow, are used to provide suitable grid distribution in the separation and reattachment regions, as well as in the inflow and outflow regions. The optimum grid distribution selected attempts to honor the multiple length scales of the separated-flow model problem. The asymptotic behavior of the finite-differenced transport equation near infinity is examined and the numerical method is carefully developed so as to lead to spatially second-order accurate wiggle-free solutions, i.e., with minimum dispersive error. Results have been obtained in the entire laminar range for the backstep channel and are in good agreement with the available experimental data for this flow problem.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The conservative form of the unsteady Navier-Stokes equations in terms of vorticity and stream function in generalized curvilinear coordinates are used to analyze the flow structure of steady separation and unsteady flow with massive separation. The numerical method solves the discretized equations using an ADI-BGE method. The method is applied to a symmetric 12 percent thick Joukowski airfoil. A conformal clustered grid is generated; several 1-D stretching transformations are used to obtain a grid that attempts to resolve many of the multiple scales of the unsteady flow with massive separation, while maintaining the transformation metrics to be smooth and continuous in the entire flow field. Detailed numerical results are obtained for three flow configurations (1) Re = 1000, alpha = 5 deg, (2) Re = 1000, alpha = 15 deg, (3) Re = 10,000, alpha = 5 deg. No artificial dissipation was added; however, lack of a fine grid in the normal direction has presently led to results which are considered qualitative, especially for case (3).
    Keywords: AERODYNAMICS
    Type: Symposium on Numerical and Physical Aspects of Aerodynamic Flows; Jan 21, 1985 - Jan 24, 1985; Long Beach, CA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...