ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019-07-17
    Description: Nioghalvfjerdsfjorden glacier is a 〉60 km long and 20 km wide floating outlet glacier located at 79°30'N, 22° W, draining a large area of the northeast Greenland ice sheet. Climate, mass-balance and dynamics studies were carried out on the glacier in three field seasons in 1996, 1997 and 1998. As part of this work, tidal-movement observations were carried out by simultaneous differential global positioning system (GPS) measurements at several locations distributed on the glacier surface. The GPS observations were performed continously over several tidal cycles. At the same time, tiltmeter measurements were carried out in the grounding zones along the glaciers margins and upstream, where the glacier leaves the main ice sheet. A tide gauge installed in the sea immediately in front of the glacier front recorded the tide in the open sea during the field seasons. The observations show that the main part of the glacier tongue responds as a freely floating plate to the phase and amplitude of the local tide in the sea. However, kilometre-wide flexure zones exist along the marginal and upstream grounding lines. Attempts to model the observed tidal defectionand tilt patterns in the flexure zone by elastic-beam theory are unsuccessful, in contrast to previous findings by other investigators. The strongest disagreement between our measurements and results derived from elastic-beam theory is a significant variation of the phase of the tidal records with distance from the grounding line (most clearly displayed by the tilt records). We suggest that the viscous properties of glacier ice must be taken into account, and consequently that a viscoelastic-beam model must be used to adequately describe tidal bending of floating glaciers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-01-01
    Description: The hydrological ice-sheet basin draining into the Tasersiaq lake, West Greenland (66°13’ N, 50°30’W), was delineated, first using standard digital elevation models (DEMs) for ice-sheet surface and bedrock, and subsequently using a new high-resolution dataset, with a surface DEM derived from repeat-track interferometric synthetic aperture radar (SAR) and a bedrock topography derived from an airborne 60 MHz ice-penetrating radar. The extent of the delineation was calculated from a water-pressure potential as a function of the ice-sheet surface and bedrock elevations and a hydraulic factor k describing the relative importance of the potential of the ice overburden pressure compared to the bedrock topography. Themeltwater run-off for the basin delineations was modelled with an energy-balance model calibrated with observed ice-sheet ablation and compared to a 25 year time series of measured basin run-off. The standard DEMs were found to be inadequate for delineation purposes, whereas delineations from high-resolution data were found to be very sensitive to changes in k in a non-linear way, causing a factor 5 change of basin area, corresponding to a doubling of the modelled runoff. The 50% standard deviation of the measured basin run-off could thus be explained by small year-to-year variations of the k-factor.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...