ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2010-03-01
    Print ISSN: 1461-023X
    Electronic ISSN: 1461-0248
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-09
    Description: Optical measurements using ultra-violet/visible (UV/Vis) spectrophotometric sensors and fluorescent dissolved organic matter (FDOM) sensors have recently been used as proxies of dissolved organic carbon (DOC) concentrations of streams and rivers at high temporal resolution. Despite of the merits of the sensors, temperature changes and particulate matter in water can interfere the sensor readings, over- or under-estimating DOC concentrations. However, little efforts have been made to compare responses of the two types of the sensors in natural conditions. We conducted both laboratory experiments and in situ monitoring with a UV/Vis sensor and a FDOM sensor during the three storm events in the fall of 2012 and the spring of 2013 in a forest stream in Korea in order to compare their performance. Laboratory experiments using the Suwannee River natural organic matter, humic acid, and fulvic acid demonstrated strong linear relationships between both the sensor signals and measured DOC concentrations with R2 ≥ 0.98. Although temperature compensation might not be needed for the UV/Vis sensor, it was sensitive to relativley small changes in turbidity. In contrast, the FDOM sensor was insenstive to relatively low turbidity while the FDOM sensor outputs decreased significantly as temperature increased, requiring temperature compensated FDOM (e.g. FDOM20 for 20 °C) for in situ monitoring of DOC. The results suggest that both sensors can be employed as a~proxy for stream DOC concentrations after temperature and turbidity compensation in a forest stream where terrestrially derived humic-like materials are dominant components.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-05
    Description: The source and sinks of carbon dioxide (CO2) and methane (CH4) due to anthropogenic and natural biospheric activities were estimated for the South Asia region (Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka). Flux estimates were based on top-down methods that use inversions of atmospheric data, and bottom-up methods that use field observations, satellite data, and terrestrial ecosystem models. Based on atmospheric CO2 inversions, the net biospheric CO2 flux in South Asia (equivalent to the Net Biome Productivity, NBP) was a sink, estimated at −104 ± 150 Tg C yr−1 during 2007–2008. Based on the bottom-up approach, the net biospheric CO2 flux is estimated to be −191 ± 193 Tg C yr−1 during the period of 2000–2009. This last net flux results from the following flux components: (1) the Net Ecosystem Productivity, NEP (net primary production minus heterotrophic respiration) of −220 ± 186 Tg C yr−1 (2) the annual net carbon flux from land-use change of −14 ± 50 Tg C yr−1, which resulted from a sink of −16 Tg C yr−1 due to the establishment of tree plantations and wood harvest, and a source of 2 Tg C yr−1 due to the expansion of croplands; (3) the riverine export flux from terrestrial ecosystems to the coastal oceans of +42.9 Tg C yr−1; and (4) the net CO2 emission due to biomass burning of +44.1 ± 13.7 Tg C yr−1. Including the emissions from the combustion of fossil fuels of 444 Tg C yr−1 for the decades of 2000s, we estimate a net CO2 land-to-atmosphere flux of 297 Tg C yr−1. In addition to CO2, a fraction of the sequestered carbon in terrestrial ecosystems is released to the atmosphere as CH4. Based on bottom-up and top-down estimates, and chemistry-transport modeling, we estimate that 37 ± 3.7 Tg C-CH4 yr−1 were released to atmosphere from South Asia during the 2000s. Taking all CO2 and CH4 fluxes together, our best estimate of the net land-to-atmosphere CO2-equivalent flux is a net source of 334 Tg C yr−1 for the South Asia region during the 2000s. If CH4 emissions are weighted by radiative forcing of molecular CH4, the total CO2-equivalent flux increases to 1148 Tg C yr−1 suggesting there is great potential of reducing CH4 emissions for stabilizing greenhouse gases concentrations.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-17
    Description: High-frequency measurements of the partial pressure of CO2 (pCO2) are crucial in elucidating spatiotemporal dynamics of CO2 evasion from inland water systems and their role in the global carbon cycle. However, direct measurements of pCO2 are scarce, and the currently used measurement systems have not been compared for long-term deployment under various field conditions. A literature review was combined with laboratory and field tests to evaluate the application potential of three widely used automated equilibration systems, including spray- and marble-type equilibrators and a membrane-enclosed CO2 sensor, to continuous long-term or underway pCO2 measurements in an urbanized river system in Korea. Both equilibrators had a shorter response time than the membrane-enclosed sensor, well capturing large spatial variations of pCO2 during a transect study along a highly urbanized river reach. The membrane-enclosed sensor based on passive equilibration provided comparable underway measurements for the same river reach until pCO2 approached the upper detection limit of the sensor. The membrane-enclosed sensor deployed in a eutrophic river site could detect large temporal variations of pCO2 over several weeks. To tackle biofouling on the membrane that can reduce sensor accuracy over time, we suggest that antifouling measures, such as copper-mesh screening, be used for long-term deployments with maintenance intervals ranging from several days to weeks. The overall results suggest that the equilibrators are better suited for relatively short underway measurements than long-term deployment, whereas the membrane-enclosed sensor can be used for both the underway and long-term continuous measurements if the sensor has a proper detection range and can be protected by a biofouling-resistant covering.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-28
    Description: Optical measurements using ultraviolet–visible (UV–VIS) spectrophotometric sensors and fluorescent dissolved organic matter (FDOM) sensors have recently been used as proxies of dissolved organic carbon (DOC) concentrations in streams and rivers at a high temporal resolution. Despite the merits of the sensors, temperature changes and particulate matter in water can interfere with the sensor readings, over- or underestimating DOC concentrations. However, little efforts have been made to compare responses of the two types of the sensors to critical interferences such as temperature and turbidity. The performance of a UV–VIS sensor and an FDOM sensor was compared in both laboratory experiments and in situ monitoring in a forest stream in Korea during three storm events. Although the UV–VIS sensor did not require temperature correction in laboratory experiments using the forest stream water, the deviations of its values from the DOC concentrations measured with a TOC analyzer increased linearly as turbidity increased. In contrast, the FDOM sensor outputs decreased significantly as temperature or turbidity increased, requiring temperature and turbidity correction for in situ monitoring of DOC concentrations. The results suggest that temperature correction is relatively straightforward but turbidity correction may not be simple because the attenuation of light by particles can significantly reduce the sensitivity of the sensors in highly turbid waters. Shifts in composition of fluorophores also need to be carefully tracked using periodically collected samples since light absorbance and fluorescence can vary as the concentrations of dominant fluorophores change.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-25
    Description: The source and sinks of carbon dioxide (CO2) and methane (CH4) due to anthropogenic and natural biospheric activities were estimated for the South Asian region (Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka). Flux estimates were based on top-down methods that use inversions of atmospheric data, and bottom-up methods that use field observations, satellite data, and terrestrial ecosystem models. Based on atmospheric CO2 inversions, the net biospheric CO2 flux in South Asia (equivalent to the Net Biome Productivity, NBP) was a sink, estimated at −104 ± 150 Tg C yr−1 during 2007–2008. Based on the bottom-up approach, the net biospheric CO2 flux is estimated to be −191 ± 193 Tg C yr−1 during the period of 2000–2009. This last net flux results from the following flux components: (1) the Net Ecosystem Productivity, NEP (net primary production minus heterotrophic respiration) of −220 ± 186 Tg C yr−1 (2) the annual net carbon flux from land-use change of −14 ± 50 Tg C yr−1, which resulted from a sink of −16 Tg C yr−1 due to the establishment of tree plantations and wood harvest, and a source of 2 Tg C yr−1 due to the expansion of croplands; (3) the riverine export flux from terrestrial ecosystems to the coastal oceans of +42.9 Tg C yr−1; and (4) the net CO2 emission due to biomass burning of +44.1 ± 13.7 Tg C yr−1. Including the emissions from the combustion of fossil fuels of 444 Tg C yr−1 for the 2000s, we estimate a net CO2 land–atmosphere flux of 297 Tg C yr−1. In addition to CO2, a fraction of the sequestered carbon in terrestrial ecosystems is released to the atmosphere as CH4. Based on bottom-up and top-down estimates, and chemistry-transport modeling, we estimate that 37 ± 3.7 Tg C yr−1 were released to atmosphere from South Asia during the 2000s. Taking all CO2 and CH4 fluxes together, our best estimate of the net land–atmosphere CO2-equivalent flux is a net source of 334 Tg C yr−1 for the South Asian region during the 2000s. If CH4 emissions are weighted by radiative forcing of molecular CH4, the total CO2-equivalent flux increases to 1148 Tg C yr−1 suggesting there is great potential of reducing CH4 emissions for stabilizing greenhouse gases concentrations.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...