ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 385 (1997), S. 290-290 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Sir- Your News story "Europe agrees a compromise on food labels" (Nature 384, 502-503; 1996) pointed out that consumer, food industry and environmental groups have weighed in with opinions on the newly proposed compromise on labelling of genetically modified foods in Europe. Conspicuously absent ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 52 (1981), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We studied the changes in function and physical properties of isolated radish (Raphonus sativus L. cv. Sparkler) lamellar membranes 48 h after chloroplast development was altered by 2, 4-(dichlorophenoxy)acet, tc acid. The number of chlorophyll molecules attendant to each electron transport chain was approximately 25% less in the chloroplasts from 2, 4-(dichlorophenoxy)acetic acid-treated plants than in chloroplasts from untreated plants. The maximal turnover rate of Photosystem I] in the treated chloroplasts was slightly less than half the turnover rate in normal chloroplasts. The efficiency of coupling between electron flux and ATP formation was not significantly different in the two chloroplast types. This hight efficiency of photophosphorylation in addition to normal membrane conductance to hydrogen ions indicates that the herbicide has not brought about a general deterioration of the membrane. A dramatic increase in the proton binding capacity of the lamellar membrane was observed in the treated chloroplasts. This increase in hydrogen ion buffering groups was largely accounted for by extrinsic membrane proteins bound to the exterior surface of the lamellar membrane. Although the addition of 2, 4-(dichloro-phenoxy) acetic acid to chloroplasts isolated from untreated plants caused concurrent uncoupling of ATP formation and inhibition of electron transport, our data show that these direct effects of the compound have little to do with its herbicidal action.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Chilling ; Coupling factor ; Photoinhibition of photosynthesis ; Photosynthesis (photoinhibition) ; Quantum yield ; Thylakoid energization ; Zea (photoinhibition)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In this study we investigated the basis for the reduction in the quantum yield of carbon assimilation in maize (Zea mays L. cv. LG11) caused by chilling in high light. After chilling attached maize leaves at 5° C for 6 h at high irradiance (1000 μmol photons·m−2·s−1) chlorophyll fluorescence measurements indicated a serious effect on the efficiency of photochemical conversion by photosystem II (PSII) and measurements of [14C]atrazine binding showed that the plastoquinone binding site was altered in more than half of the PSII reaction centres. Although there were no direct effects of the chilling treatment on coupling-factor activity, ATP-formation capacity was affected because the photoinhibition of PSII led to a reduced capacity to energize the thylakoid membranes. In contrast to chilling at high irradiance, no photoinhibition of PSII accompanied the 20% decrease in the quantum yield of carbon assimilation when attached maize leaves were chilled in low light (50 μmol photons·m−2·s−1). Thus it is clear that photoinhibition of PSII is not the sole cause of the light-dependent, chillinduced decrease in the quantum yield of carbon assimilation. During the recovery of photosynthesis from the chilling treatment it was observed that full [14C]atrazinebinding capacity and membrane-energization capacity recovered significantly more slowly than the quantum yield of carbon assimilation. Thus, not only is photoinhibition of PSII not the sole cause for the decreased quantum yield of carbon assimilation, apparently an appreciable population of photoinhibited PSII centres can be tolerated without any reduction in the quantum yield of carbon assimilation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 25 (1990), S. 137-139 
    ISSN: 1573-5079
    Keywords: Photosynthesis ; uncoupling ; Cucumis sativus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 36 (1993), S. 205-215 
    ISSN: 1573-5079
    Keywords: chlororespiration ; flash fluorescence ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Although it is generally assumed that the plastoquinone pool of thylakoid membranes in leaves of higher plants is rapidly oxidized upon darkening, this is often not the case. A multiflash kinetic fluorimeter was used to monitor the redox state of the plastoquinone pool in leaves. It was found that in many species of plants, particularly those using the NAD-malic enzyme C4 system of photosynthesis, the pool actually became more reduced following a light to dark transition. In some Amaranthus species, plastoquinone remained reduced in the dark for several hours. Far red light, which preferentially drives Photosystem I turnover, could effectively oxidize the plastoquinone pool. Plastoquinone was re-reduced in the dark within a few seconds when far red illumination was removed. The underlying mechanism of the dark reduction of the plastoquinone pool is still uncertain but may involve chlororespiratory activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5079
    Keywords: ATP synthesis ; chlorophyll fluorescence ; cucumber ; electrochromic change
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The potential involvement of impaired photophosphorylation in the chilling sensitivity of photosynthesis in warm climate plant species has been a topic of investigation for more than two decades. With recent advances in the analysis of photosynthetic energy transduction in intact leaves, experiments are now possible that either address or avoid important uncertainties in the significance and interpretation of earlier in vitro work. Nevertheless, different laboratories using different techniques to analyze the effects of chilling in the light on photophosphorylation in intact cucumber (Cucumis sativus) leaves have come to very different conclusions regarding the role of impaired ATP formation capacity in the inhibition of net photosynthesis. In order to evaluate these discrepancies and bring this issue to a final resolution, in this investigation, we have made a detailed analysis of the decay of the flash-induced electrochromic shift and changes in chlorophyll fluorescence yield in cucumber leaves before, during and after a 5 h light-chill at chill temperatures of between 4 and 10°C. We feel that our findings address the major discrepancies in both data and interpretation as well as provide convincing evidence that photophosphorylation is not disrupted in cucumber leaves during or after light and chilling exposure. It follows that impaired photophosphorylation is not a contributing element to the inhibition of net photosynthesis that is widely observed in warm climate plants as a result of chilling in the light.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 23 (1990), S. 101-104 
    ISSN: 1573-5079
    Keywords: Photosystem II ; plastoquinone ; heterogeneity ; stoichiometry ; spinach thylakoid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The abundance of photosystem II in chloroplast thylakoid membranes has been a contentious issue because different techniques give quite different estimates of photosystem II titer. This discrepancy led in turn to disagreements regarding the stoichiometry of photosystem II to photosystem I in these membranes. We believe that the discrepancy in photosystem II quantitation is resolved by evidence which shows that a large population of photosystem II centers with negligible turnover rates are present in isolated thylakoid membranes as well as in normally developed leaves of healthy plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5079
    Keywords: chloroplast coupling factor ; induction ; thioredoxin ; regulation ; ATP synthase ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Simultaneous, non-invasive measurements were made of the rate of photosynthetic CO2 fixation and the state of activation of the chloroplast CF1CF0-ATP synthase (CF) in field-grown sunflower (Helianthus annuus L.) during the dark-to-light transition at sunrise. CO2 fixation showed a linear response with light intensity from zero to about 500–700 μE m-2 s-1. However, at light intensities of only 5–22 μE m-2 s-1, the energetic threshold for activation of the CF was found to be significantly lowered (as compared to the pre-dawn state), presumably through reduction of the regulatory sulfhdryl groups of the γ-subunit of the CF. When these studies were extended to chamber-grown plants, it was found that as little as 5 seconds of illumination at 4 μE m-2 s-1 caused apparently full CF reduction. It is clear, therefore, that the catalytic activation of CF is not rate limiting to the induction of carbon assimilation under field conditions during a natural dark-to-light transition at sunrise. A model, based on the redox properties of the regulatory sulfhydryls, was developed to examine the significance of sulfhydryl midpoint potential in explaining the differences in light sensitivity and oxidation and reduction kinetics, between the CF and other thioredoxin-modulated chloroplast enzymes. Computer simulations of the light-induced regulation of three representative thioredoxin-modulated enzymes are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5079
    Keywords: chilling ; chloroplast ; CO2 fixation ; electron transfer ; photoinhibition ; photosynthesis ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Exposure of tomato plants (Lycopersicon esculentum Mill. cv. Floramerica) to chilling temperatures in the dark for as little as 12 h resulted in a sizable inhibition in the rate of light- and CO2-saturated photosynthesis. However, when photosynthesis was measured at low light intensity, the inhibition disappeared and the quantum yield of CO2 reduction was diminished only slightly. Chilling the tomato plants under strong illumination caused an even more rapid and severe decline in the rate of light- and CO2-saturated photosynthesis, accompanied by a large decline in the quantum efficiency. Sizeable inhibition of photosystem II activity was observed only after dark exposures to low temperature of grater than 16 h. No inhibition of photosystem I electron transfer capacity was observed even after 40 h of dark chilling. Chilling under high light resulted in a rapid decline in both photosystem I and photosystem II electron transfer capacity as well as in significant reaction center inactivation. Regardless of whether the chilling exposure was in the presence or absence of illumination and regardless of its duration, the electron transfer capacity of thylakoid membranes isolated from the treated plants was always in excess of that necessary to support light- and CO2-saturated photosynthesis. Thus, in neither case of chilling inhibition of photosynthesis does it appear that impaired electron transfer capacity represents a significant rate limitation to whole plant photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...