ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 102 (1980), S. 7629-7634 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 100 (1978), S. 5213-5215 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 28 (1963), S. 1182-1187 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 1309-1321 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Two-color time-of-flight mass spectroscopy is employed to study the van der Waals (vdW) clusters of benzene(N2)n (n≤8), benzene(CO2)n (n≤7), and benzene(CO)n (n=1,2) created in a supersonic molecular jet. Potential energy calculations of cluster geometries, normal coordinate analysis of vdW vibrational modes, and calculations of the internal rotational transitions are employed for the assignment of the benzene(solvent)1 cluster spectra in the 000 and 610 regions of the benzene 1B2u←1A1g transition. The respective vibronic and rotational selection rules for these clusters are determined based on the appropriate point groups and molecular symmetry groups of the clusters. Good agreement between the calculated and experimental spectra is obtained with regard to the vdW vibrational and internal rotational modes. The solvent molecules rotate nearly freely with respect to benzene about the benzene–solvent bond axis in the benzene(solvent)1 clusters. In the excited state a small ∼20 cm−1 barrier to rotation is encountered. Studies of larger clusters (n〉2) reveal a broad red shifted single origin in the 610 spectra. A linearly increasing cluster energy shift is observed as a function of cluster size. The cluster energy shifts are not saturated by one solvent molecule on each side of the aromatic ring; several solvent molecules effectively interact with the solute π electronic cloud. Both homogeneous and inhomogeneous nucleation take place for the clusters studied depending on the ratio of the solvent–solvent binding energy to the cluster binding energy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 86 (1987), S. 4783-4789 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Energy shifts and bandwidths for the 1B2u←1A1g optical absorption of benzene in supercritical nitrogen are presented as a function of pressure, temperature, and density. The pressure and density dependence of energy shifts of room temperature emission of benzene in nitrogen fluid is also reported. Both absorption and emission spectra exhibit shifts to lower energy as a function of density, whereas almost no spectral shifts are observed if the density is kept constant and temperature and pressure varied simultaneously. Thus, density is the fundamental microscopic parameter for energy shifts of optical transitions in supercritical nitrogen. This result is analogous to the findings for the liquid benzene/propane system and can be interpreted qualitatively in terms of changes occurring in the intermolecular potential; however, in the benzene/supercritical nitrogen system an additional small density independent temperature effect on the transition energy has been identified. Experimental results are compared to dielectric (Onsager–Böttcher and Wertheim) and microscopic quantum statistical mechanical (Schweizer–Chandler) theories of solvent effects on solute electronic spectra. Reasonably good agreement between experiment and theory is found. The results demonstrate that liquid state theory can be used to describe the supercritical nitrogen fluid.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 87 (1987), S. 2457-2465 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Energy shifts and bandwidths of the 610 vibronic feature of the 1B2u←1A1g optical absorption spectrum of benzene dissolved in supercritical argon and helium, and in liquid argon are reported as a function of pressure, temperature, and density. Benzene/Ar solutions display red shifts of the 610 transition with increasing density but the dependence is found to be nonlinear at high densities. Benzene/He solutions evidence blue shifts of the 610 transition as a function of increasing density which also becomes nonlinear at high densities. Only small spectral shifts are recorded if the density is kept constant and pressure and temperature are varied simultaneously. In addition, a small density independent temperature effect on the transition energy shift is identified. Experimental results are compared to dielectric (Onsager–Böttcher and Wertheim) and quantum statistical mechanical (Schweizer–Chandler) theories of solvent effects on solute absorption energy. Reasonably good agreement between experiment and theory is found only for the benzene/Ar system at relatively low densities. The theory fails to predict energy shifts for both the benzene/He and high density benzene/Ar systems. This result is different from the findings for the benzene/N2 and benzene/C3H8 solutions and can be interpreted qualitatively in terms of competition between dispersive attractive and repulsive interactions as a function of density. The failure of the theory to describe these transition energy shifts is attributed to the omission of explicit repulsive interactions terms in the theoretical models employed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 86 (1987), S. 3197-3206 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Energy shifts and bandwidths for the 1B2u↔1A1g optical absorption and emission transitions of benzene dissolved in propane are presented as a function of pressure, temperature, and density. Both absorption and emission spectra exhibit shifts to lower energy as a function of density, whereas no shifts are observed if density is kept constant and temperature and pressure are varied simultaneously. Density is thus the fundamental microscopic parameter for energy shifts of optical transitions. The emission half-width is a linear function of both temperature and pressure but the absorption half-width is dependent only upon pressure. These results are interpreted qualitatively in terms of changes occurring in the intermolecular potentials of the ground and excited states. Both changes in shape of and separation between the ground and excited state potentials are considered as a function of density. Classical dielectric (Onsager–Böttcher), microscopic dielectric (Wertheim) and microscopic quantum statistical mechanical (Schweizer–Chandler) theories of solvent effects on solute electronic spectra are compared with the experimental results. Calculations suggest limited applicability of dielectric theories but good agreement between experiment and microscopic theory. The results demonstrate the usefulness of cryogenic solutions for high pressure, low temperature spectroscopic studies of liquids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Animal Reproduction Science 8 (1985), S. 241-246 
    ISSN: 0378-4320
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0020-1693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...