ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Adsorption 3 (1997), S. 41-54 
    ISSN: 1572-8757
    Keywords: liquid crystals ; moving bed system ; simulation ; purification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract We investigate convective-diffusive transport of a solute through a medium with properties that can be externally modulated in space and time. In particular, we focus on the effect of a front—a sharp transition in the convective velocity (v) and diffusivity (D)—on the evolution of the solute concentration profile. Numerical results show that by suitably moving the front during the process an anti-dispersive effect may be realized, in which the solute accumulates in a thin region close to the moving boundary. Our computations take into account the realistic case of a front having a small but finite thickness, and we find that the width of the concentration profile scales as $$\left( {1/\sqrt {Pe} } \right)$$ , where Pe is the Péclet number. This is in sharp contrast to the 1/Pe scaling observed for the ideal case of the singular front assumed in previous work. The effect of the thickness of the front and the magnitude of the drop inv andD, on the solute concentration profile has also been studied. These results are relevant in order to implement and optimize protocols that apply an externally controlled moving boundary for the purpose of separation. We also present experimental results characterizing solute transport across a stationary front, expected to display many features needed in a model for moving fronts. The concentration profile of electrophoretically mobile BSA-FITC within the boundary layer at a polyacrylamde gel-buffer interface were visualized by epifluorescence microscopy. Measured boundary layer thickness exceeded that predicted for even a finite interface, indicating that the length scale associated with real boundaries is relevant to the modeling problem.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 631-644 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Electrophoresis of a solute through a column in which its transport is governed by the convection - diffusion equation is described. Approximate solutions to the convection - diffusion equation in the limit of small diffusion are developed using perturbation methods. The diffusion coefficient and velocity are assumed to be functions of space and time such that both undergo a sudden change from one constant value to another within a thin transition zone that itself translates with a constant velocity. Two cases are considered: (1) the thickness ∊f of the transition zone is negligible compared to the diffusional length scale, so the zone may be treated as a singular boundary across which the diffusion constant and velocity suffer discontinuous changes; (2) the transition zone is considerably wider than the diffusional length scale, so the diffusion coefficient and velocity, although sharply varying, are smooth functions of position and time. A systematic perturbation expansion of the concentration distribution is presented for case 1 in terms of the small parameter ∊ = 1/Pe. A lowest order approximation is given for case 2. A suitably configured system analyzed here can lead to progressive accumulation, or focusing, of the transported solute. The degree of focusing in case 1 scales with ∊-1, whereas in case 2 it scales with (∊f∊)-1/2, and thus increases much more weakly with increasing Pe. A separation based on this concept requires development of materials and devices that allow dynamic tuning of the mass-transport properties of a medium. This would make it possible to achieve progressive focusing and separation of solutes, such as proteins and DNA fragments, in electrophoretic media with an unprecedented degree of control.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 1366-1368 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-01
    Description: ABSTRACT Topographic measurements are essential for the study of earth surface processes. Three-dimensional data have been conventionally obtained through terrestrial laser scanning or photogrammetric methods. However, particularly in steep and rough terrain, high-resolution field measurements remain challenging and often require new creative approaches. In this paper, range imaging is evaluated as an alternative method for obtaining surface data in such complex environments. Range imaging is an emerging time-of-flight technology, using phase shift measurements on a multi-pixel sensor to generate a distance image of a surface. Its suitability for field measurements has yet not been tested. We found ambient light and surface reflectivity to be the main factors affecting error in distance measurements. Low-reflectivity surfaces and strong illumination contrasts under direct exposure to sunlight lead to noisy distance measurements. However, regardless of lighting conditions, the accuracy of range imaging was markedly improved by averaging multiple images of the same scene. For medium ambient lighting (shade) and a light-coloured surface the measurement uncertainty was approximately 9 mm. To further test the suitability of range imaging for field applications we measured a reach of a steep mountain stream with a horizontal resolution of circa 1 cm (in the focal plane of the camera), allowing for the interpolation of a digital elevation model on a 2 cm grid. Comparison with an elevation model obtained from terrestrial laser scanning for the same site revealed that both models show similar degrees of topographic detail. Despite limitations in measurement range and accuracy, particularly at bright ambient lighting, range imaging offers three dimensional data in real time and video mode without the need of post-processing. Therefore, range imaging is a useful complement or alternative to existing methods for high-resolution measurements in small- to medium-scale field sites. Copyright © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1993-07-01
    Description: In a previous paper we analysed the stability to small disturbances of stationary stratified fluid which is unbounded. Various forms of the undisturbed density distribution were considered, including a sinusoidal profile and a function of the vertical coordinate z which is constant outside a central horizontal layer. Both these types of stratification are so unstable that the critical Rayleigh number is zero. In this sequel we make the study more complete and more useful by taking account of the effect of a vertical circular cylindrical boundary of radius a which is rigid and impermeable. As in the previous paper we assume that the undisturbed density distribution is steady. The case of fluid in a vertical tube with a uniform density gradient is useful for comparison, and so we review and extend the available results, in particular obtaining growth rates for a disturbance which is neither z-independent nor axisymmetric. A numerical finite-difference method is then developed for the case in which dp/dz = ρ0k a cos kz. when Ka«1 the relation between growth rate and Rayleigh number approximates to that for a uniform density gradient of magnitude ρ0k a; and when ka 〉 〉 1 the tilting—sliding mechanism identified in the previous paper is relevant and the results approximate to those for an unbounded fluid, except that the smallest Rayleigh number for a neutral disturbance is not zero but is of order (ka)-1. In the case of an undisturbed density which varies only in a central layer of thickness l, the same mechanism is at work when the horizontal lengthscale of the disturbance is large compared with l, resulting in high growth rates and a critical Rayleigh number which vanishes with l/a. Estimates of the growth rate are given for some particular density profiles. © 1993, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1994-11-10
    Description: It is a significant feature of most gas-fluidized beds that they contain rising ‘bubbles’ of almost clear gas. The purpose of this paper is to account plausibly for this remarkable property first by supposing that primary and secondary instabilities of the fluidized bed generate compact regions of above-average or below-average particle concentration, and second by invoking a mechanism for the expulsion of particles from a buoyant compact blob of smaller particle concentration. We postulate that the rising of such an incipient bubble generates a toroidal circulation of the gas in the bubble, roughly like that in a drop of liquid rising through a second liquid of larger density, and that particles in the blob carried round by the fluid move on trajectories which ultimately cross the bubble boundary. Numerical calculations of particle trajectories for practical values of the relevant parameters show that a large percentage of particles, of such small concentration that they move independently, are expelled from a bubble in the time taken by it to rise through a distance of several bubble diameters.Similar calculations for a liquid-fluidized bed show that the expulsion mechanism is much weaker, as a consequence of the larger density and viscosity of a liquid, which is consistent with the absence of observations of relatively empty bubbles in liquid-fluidized beds.It is found to be possible, with the help of the Richardson-Zaki correlation, to adjust the results of these calculations so as to allow approximately for the effect of interaction of particles in a bubble in either a gas- or a liquid-fluidized bed. The interaction of particles at volume fractions of 20 or 30 % lengthens the expulsion times, although without changing the qualitative conclusions.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1997-06-10
    Description: The general purpose of this paper is to investigate some consequences of the randomness of the velocities of interacting rigid particles falling under gravity through viscous fluid at small Reynolds number. Random velocities often imply diffusive transport of the particles, but particle diffusion of the conventional kind exists only when the length characteristic of the diffusion process is small compared with the distance over which the particle concentration is effectively uniform. When this condition is not satisfied, some alternative analytical description of the dispersion process is needed. Here we suppose that a dilute dispersion of sedimenting particles is bounded externally by pure fluid and enquire about the rate at which particles make outward random crossings of the (imaginary) boundary. If the particles are initially distributed with uniform concentration within a spherical boundary, we gain the convenience of approximately steady conditions with a velocity distribution like that in a falling spherical drop of pure liquid. However, randomness of the particle velocities causes some particles to make an outward crossing of the spherical boundary and to be carried round the boundary and thence downstream in a vertical 'tail'. This is the nature of break-up of a falling cloud of particles. A numerical simulation of the motion of a number of interacting particles (maximum 320) assumed to act as Stokeslets confirms the validity of the above picture of the way in which particles leak away from a spherical cluster of particles. A dimensionally correct empirical relation for the rate at which particles are lost from the cluster involves a constant which is indeed found to depend only weakly on the various parameters occurring in the numerical simulation. According to this relation the rate at which particles are lost from the blob is proportional to the fall speed of an isolated particle and to the area of the blob boundary. Some photographs of a leaking tail of particles in figure 5 also provide support for the qualitative picture.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-06-01
    Description: Suppose that the density of stationary unbounded viscous fluid is a sinusoidal function of the vertical position coordinate z. Is this body of fluid gravitationally unstable to small disturbances, and, if so, under what conditions, and to what type of disturbance ? These questions are considered herein, and the answers are that the fluid is indeed unstable, for any non-zero value of the amplitude of the sine wave, to disturbances with large horizontal wavelength. These disturbances have approximately vertical velocity everywhere and tilt the alternate layers of heavier and of lighter fluid, causing the fluid in the former to slide down and that in the latter to slide up, leading to a sinusoidal variation of the vertically averaged density and thereby to reinforcement of the vertical motion. The identification of this novel and efficient global instability mechanism prompts a consideration of the stability of other cases of unbounded fluid stratified in layers. Two other types of undisturbed density distribution, the first an isolated central layer of heavier or lighter fluid, with density varying say as a Gaussian function, and the second an isolated layer of fluid in which the density varies as the derivative of a Gaussian function, are found to be unstable, at all values of the magnitude of the density variation, to disturbances having the same global character. For the first of these two types of density distribution, the behaviour of a disturbance with long horizontal wavelength depends only on the net excess mass of unit area of the central layer, and for the second it depends only on the first moment of the density in the central layer. For the second type there arises another global instability mechanism in which light fluid is stripped away from one side of the layer and heavy fluid from the other without any tilting. In all cases the properties of a neutral disturbance are determined numerically, and the growth rate is found as a function of the Rayleigh number, the Prandtl number, and the horizontal wavenumber of the disturbance. An energy argument gives results easily for the inviscid non-diffusive limit, when all disturbances grow, and reveals the tilting-sliding mechanism of the instability of a disturbance with large horizontal wavelength in its simplest form. © 1991, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-05-01
    Print ISSN: 0001-1541
    Electronic ISSN: 1547-5905
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley on behalf of American Institute of Chemical Engineers.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-03-01
    Print ISSN: 0001-1541
    Electronic ISSN: 1547-5905
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley on behalf of American Institute of Chemical Engineers.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...