ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2012-07-11
    Description: Penetration resistance to powdery mildew fungi, conferred by localized cell wall appositions (papillae), is one of the best-studied processes in plant innate immunity. The syntaxin PENETRATION (PEN)1 is required for timely appearance of papillae, which contain callose and extracellular membrane material, as well as PEN1 itself. Appearance of membrane material in papillae suggests secretion of exosomes. These are potentially derived from multivesicular bodies (MVBs), supported by our observation that ARA6-labeled organelles assemble at the fungal attack site. However, the trafficking components that mediate delivery of extracellular membrane material are unknown. Here, we show that the delivery is independent of PEN1 function. Instead, we find that application of brefeldin (BF)A blocks the papillary accumulation of GFP-PEN1–labeled extracellular membrane and callose, while impeding penetration resistance. We subsequently provide evidence indicating that the responsible BFA-sensitive ADP ribosylation factor–GTP exchange factor (ARF-GEF) is GNOM. Firstly, analysis of the transheterozygote gnomB4049/emb30-1 (gnomB/E) mutant revealed a delay in papilla formation and reduced penetration resistance. Furthermore, a BFA-resistant version of GNOM restored the BFA-sensitive papillary accumulation of GFP-PEN1 and callose. Our data, therefore, provide a link between GNOM and disease resistance. We suggest that papilla formation requires rapid reorganization of material from the plasma membrane mediated by GNOM. The papilla material is subsequently presumed to be sorted into MVBs and directed to the site of fungal attack, rendering the epidermal plant cell inaccessible for the invading powdery mildew fungus.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...