ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2018-11-16
    Description: In this study, a novel non-invasive and contactless microwave sensor using a square substrate integrated waveguide (SIW) re-entrant cavity is proposed for complex permittivity measurement of chemical solutions. The working principle of this sensor is based on cavity perturbation technique, in which the resonant properties of cavity are utilized as signatures to extract the dielectric information of liquid under test (LUT). A winding microfluidic channel is designed and embedded in the gap region of the cavity to obtain a strong interaction between the induced electric field and LUT, thus achieving a high sensitivity. Also, a mathematical predictive model which quantitatively associates the resonant properties of the sensor with the dielectric constant of LUT is developed through numerical analysis. Using this predictive model, quick and accurate extraction of the complex permittivity of LUT can be easily realized. The performance of this sensor is then experimentally validated by four pure chemicals (hexane, ethyl acetate, DMSO and water) together with a set of acetone/water mixtures in various concentrations. Experimental results demonstrate that the designed sensor is capable of characterizing the complex permittivities of various liquids with an accuracy of higher than 96.76% (compared with the theoretical values obtained by Debye relaxation equations), and it is also available for quantifying the concentration ratio of a given binary mixture.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-27
    Description: In this study, an ultra-compact humidity sensor based on a double-folded substrate integrated waveguide (SIW) re-entrant cavity was proposed and analyzed. By folding a circular re-entrant cavity twice along its two orthogonally symmetric planes, the designed structure achieved a remarkable size reduction (up to 85.9%) in comparison with a conventional TM010-mode circular SIW cavity. The operating principle of the humidity sensor is based on the resonant method, in other words, it utilizes the resonant properties of the sensor as signatures to detect the humidity condition of the ambient environment. To this end, a mathematical model quantitatively relating the resonant frequency of the sensor and the relative humidity (RH) level was established according to the cavity perturbation theory. The sensing performance of the sensor was experimentally validated in a RH range of 30%–80% by using a humidity chamber. The measured absolute sensitivity of the sensor was calculated to be 135.6 kHz/%RH, and the corresponding normalized sensitivity was 0.00627%/%RH. It was demonstrated that our proposed sensor not only has the merits of compact size and high sensitivity, but also benefits from a high Q-factor and ease of fabrication and integration. These advantages make it an excellent candidate for humidity sensing applications in various fields such as the agricultural, pharmaceutical, and food industries.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...