ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-09-01
    Description: The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission, was conducted in south-central Oklahoma during April–May 2011. MC3E science objectives were motivated by the need to improve our understanding of midlatitude continental convective cloud system life cycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives, a multiscale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop size distributions, and ice properties were retrieved from multiwavelength radar, profiler, and aircraft observations for a mesoscale convective system (MCS) on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multiplatform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 m s−1 supported growth of hail and large raindrops. Data collected during the MC3E campaign are being used in a number of current and ongoing research projects and are available through the ARM and NASA data archives.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-15
    Description: This study examines the diurnal cycle of precipitation features in two regions of the tropical east Pacific where field campaigns [the East Pacific Investigation of Climate Processes in the Coupled Ocean–Atmosphere System (EPIC) and the Tropical Eastern Pacific Process Study (TEPPS)] were recently conducted. EPIC (10°N, 95°W) was undertaken in September 2001 and TEPPS (8°N, 125°W) was carried out in August 1997. Both studies employed C-band radar observations on board the NOAA ship Ronald H. Brown (RHB) and periodic upper-air sounding launches to observe conditions in the surrounding environment. Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and Geostationary Operational Environmental Satellite (GOES) IR data are used to place the RHB data in a climatological context and Tropical Atmosphere Ocean (TAO) buoy data are used to evaluate changes in boundary layer fluxes in context with the observed diurnal cycle of radar observations of precipitation features. Precipitation features are defined as contiguous regions of radar echo and are subdivided into mesoscale convective system (MCS) and sub-MCS categories. Results show that MCSs observed in EPIC and TEPPS have distinct diurnal signatures. Both regions show an increase in intensity starting in the afternoon hours, with the timing of maximum rain intensity preceding maxima in rain area and accumulation. In the TEPPS region, MCS rain rates peak in the evening and rain area and accumulation in the late night–early morning hours. In contrast, EPIC MCS rain rates peak in the late night–early morning, and rain area and accumulation are at a maximum near local sunrise. The EPIC observations are in agreement with previous satellite studies over the Americas, which show a phase lag response in the adjacent oceanic regions to afternoon–evening convection over the Central American landmass. Sub-MCS features in both regions have a broad peak extending through the evening to late night–early morning hours, similar to that for MCSs. During sub-MCS-only periods, the rainfall patterns of these features are closely linked to diurnal changes in SST and the resulting boundary layer flux variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-10-20
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-03-01
    Description: The linkages between the space-time variability of observed clouds, rainfall, large-circulation patterns and topography in northern India and the Himalayas were investigated using remote sensing data. The research purpose was to test the hypothesis that cloudiness patterns are dynamic tracers of rainstorms, and therefore their temporal and spatial evolution can be used as a proxy of the spatial and temporal organization of precipitation and precipitation processes in the Himalayan range during the monsoon. The results suggest that the space-time distribution of precipitation, the spatial variability of the diurnal cycle of convective activity, and the terrain (landform and altitudinal gradients) are intertwined at spatial scales ranging from the order of a few kms (1–5km) up to the continental-scale. Furthermore, this relationship is equally strong in the time domain with respect to the onset and intra-seasonal variability of the monsoon. Infrared and microwave imagery of cloud fields were analyzed to characterize the spatial and temporal evolution of mesoscale convective weather systems and short-lived convection in Northern India, the Himalayan range, and in the Tibetan Plateau during three monsoon seasons (1999, 2000 and 2001). The life cycle of convective systems suggests landform and orographic controls consistent with a convergence zone constrained to the valley of the Ganges and the Himalayan range, bounded in the west by the Aravalli range and the Garhwal mountains and in the East by the Khasi Hills and the Bay of Bengal, which we call the Northern India Convergence Zone (NICZ). The NICZ exhibits strong night-time activity along the south-facing slopes of the Himalayan range, which is characterized by the development of short-lived convection (1–3h) aligned with protruding ridges between 1:00 and 3:00 AM. The intra-annual and inter-annual variability of convective activity in the NICZ were assessed with respect to large-scale synoptic conditions, monsoon activity in the Bay of Bengal, and the modulating role of orography. Empirical orthogonal function (EOF) and canonical correlation (CC) analysis suggest that joint modes of variability of monsoon weather and topography, which we call orographic land-atmosphere interactions, modulate the space-time variability of cloudiness in the region. Finally, scaling analysis of cloudiness suggests three different scaling regimes of orographic land-atmosphere interactions: 1) a synoptic-scale regime (≥70-80km); 2) an orographic meso–β regime (30–70km) associated with the succession of wide valleys and bulky terrain features; and 3) an orographic meso–α regime (≤30km) associated with the complex succession of protruding south-facing ridges and narrow valleys that characterize the Himalayan foothills between altitudes of 3000 and 5000m elevations.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-04-01
    Description: Ship-based radar data are used to compare the structure of precipitation features in two regions of the east Pacific where recent field campaigns were conducted: the East Pacific Investigation of Climate Processes in the Coupled Ocean–Atmosphere System (EPIC-2001; 10°N, 95°W) in September 2001 and the Tropical Eastern Pacific Process Study (TEPPS; 8°N, 125°W) in August 1997. Corresponding July–September 1998–2004 Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) data are also used to provide context for the field campaign data. An objective technique is developed to identify precipitation features in the ship and TRMM PR data and to develop statistics on horizontal and vertical structure and precipitation characteristics. Precipitation features were segregated into mesoscale convective system (MCS) and sub-MCS categories, based on a contiguous area threshold of 1000 km2 (these features were required to have at least one convective pixel), as well as an “other” (NC) category. Comparison of the satellite and field campaign data showed that the two datasets were in good agreement for both regions with respect to MCS features. Specifically, both the satellite and ship radar data showed that approximately 80% of the rainfall volume in both regions was contributed by MCS features, similar to results from other observational datasets. EPIC and TEPPS MCSs had similar area distributions but EPIC MCSs tended to be more vertically developed and rain heavier than their TEPPS counterparts. In contrast to MCSs, smaller features (NCs and sub-MCSs) sampled by the ship radar in both regions showed important differences compared with the PR climatology. In the EPIC field campaign, a large number of small (
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: This study utilizes TRMM satellite precipitation radar, lightning imaging sensor, and passive microwave imager data together with ground-based lightning data to investigate the vertical structure, lightning, and rainfall characteristics of Amazonian and central South American convection for three separate wet-seasons. These characteristics are partitioned as a function of 850 mb zonal wind direction, motivated by observations collected during the six-week TRMM-LBA field campaign. The TRMM-LBA field campaign observations suggest that systematic variations in Amazonian convective vertical structure, lightning, and rainfall are all linked to bimodal variations in the low-level zonal wind (e.g., easterly and westerly regimes). The more spatially and temporally comprehensive TRMM dataset used in this study extends the TRMM-LBA observations by examining regime variability in Amazonian and South American convective structure over a continental scale domain. On a continental-scale, patterns of east and west regime 850 mb winds combined with LIS lightning flash densities suggest the presence of synoptic-scale controls (e.g., intrusion of extratropical frontal systems and interaction with the SACZ) on regional-scale variability in convective vertical structure. TRMM PR, TMI and ground-based lightning data suggest that regional variability in wet-season convective structure is most evident over the southern Amazon, Mato Grosso, Altiplano, southern Brazil, and eastern coastal regions of central and southern South America. Convective vertical structure, rain fall rates, and lightning activity are all more pronounced during easterly (westerly) regimes over the southern Amazon and Mato Grosso (Altiplano, and southern Brazil). Importantly, when considered with case-study results from TRMM-LBA, the systematic differences in convective structure that occur as a function of regime suggest that associated regime-differences may exist in the vertical distribution of diabatic heating. Hence the discrimination of convective vertical structure "regimes" over parts of the Amazon and vicinity based on a resolved variable such as the 850 mb zonal wind direction, while far from being perfect, may have important applications to the problems of cumulus parameterization, rainfall estimation and retrievals of latent heating over the Amazon.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-05
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...