ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI A9-89-0434
    Type of Medium: Monograph available for loan
    Pages: 231 S.
    ISBN: 5-02-000727-7
    Language: Russian
    Note: In kyrill. Schr.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The thermospheric and ionospheric effects of the precipitating electron flux and field-aligned-current variations in the cusp have been modelled by the use of a new version of the global numerical model of the Earth’s upper atmosphere developed for studies of polar phenomena. The responses of the electron concentration, ion, electron and neutral temperature, thermospheric wind velocity and electric-field potential to the variations of the precipitating 0.23-keV electron flux intensity and field-aligned current density in the cusp have been calculated by solving the corresponding continuity, momentum and heat balance equations. Features of the atmospheric gravity wave generation and propagation from the cusp region after the electron precipitation and field-aligned current-density increases have been found for the cases of the motionless and moving cusp region. The magnitudes of the disturbances are noticeably larger in the case of the moving region of the precipitation. The thermospheric disturbances are generated mainly by the thermospheric heating due to the soft electron precipitation and propagate to lower latitudes as large-scale atmospheric gravity waves with the mean horizontal velocity of about 690 ms−1. They reveal appreciable magnitudes at significant distances from the cusp region. The meridional-wind-velocity disturbance at 65° geomagnetic latitude is of the same order (100 ms−1) as the background wind due to the solar heating, but is oppositely directed. The ionospheric disturbances have appreciable magnitudes at the geomagnetic latitudes 70°–85°. The electron-concentration and -temperature disturbances are caused mainly by the ionization and heating processes due to the precipitation, whereas the ion-temperature disturbances are influence strongly by Joule heating of the ion gas due to the electric-field disturbances in the cusp. The latter strongly influence the zonal- and meridional-wind disturbances as well via the effects of ion drag in the cusp region. The results obtained are of interest because of the location of the
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0992-7689
    Keywords: Ionosphere (ionosphere-atmosphere interactions; ionosphere-magnetosphere interactions; ionospheric disturbances).
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earth’s upper atmosphere. Two variants of the calculations have been performed both for the IMF By 〈 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer) Hemisphere obtained from DE-2 data for IMF By 〈 0 but for the Northern (winter) Hemisphere there is a disagreement at high latitudes in the afternoon sector of the cusp region. At the same time, the model results for this sector agree with other DE-2 data and with the ground-based FPI data. All ionospheric and thermospheric disturbances in the second variant of the calculations are more intensive in the winter cusp region in comparison with the summer one and this seasonal difference is larger than in the first variant of the calculations, especially in the electron density and all temperature variations. The means that the seasonal effects in the cusp region are stronger in the thermospheric and ionospheric responses to the FAC variations than to the precipitation disturbances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-10-01
    Print ISSN: 0016-7932
    Electronic ISSN: 1555-645X
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-01-01
    Print ISSN: 0273-1177
    Electronic ISSN: 1879-1948
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-10-31
    Description: The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earth's upper atmosphere. Two variants of the calculations have been performed both for the IMF By 〈 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer) Hemisphere obtained from DE-2 data for IMF By 〈 0 but for the Northern (winter) Hemisphere there is a disagreement at high latitudes in the afternoon sector of the cusp region. At the same time, the model results for this sector agree with other DE-2 data and with the ground-based FPI data. All ionospheric and thermospheric disturbances in the second variant of the calculations are more intensive in the winter cusp region in comparison with the summer one and this seasonal difference is larger than in the first variant of the calculations, especially in the electron density and all temperature variations. The means that the seasonal effects in the cusp region are stronger in the thermospheric and ionospheric responses to the FAC variations than to the precipitation disturbances.Key words. Ionosphere (ionosphere · atmosphere interactions; ionosphere · magnetosphere interactions; ionospheric disturbances).
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-12-31
    Description: The thermospheric and ionospheric effects of the precipitating electron flux and field-aligned-current variations in the cusp have been modelled by the use of a new version of the global numerical model of the Earth's upper atmosphere developed for studies of polar phenomena. The responses of the electron concentration, ion, electron and neutral temperature, thermospheric wind velocity and electric-field potential to the variations of the precipitating 0.23-keV electron flux intensity and field-aligned current density in the cusp have been calculated by solving the corresponding continuity, momentum and heat balance equations. Features of the atmospheric gravity wave generation and propagation from the cusp region after the electron precipitation and field-aligned current-density increases have been found for the cases of the motionless and moving cusp region. The magnitudes of the disturbances are noticeably larger in the case of the moving region of the precipitation. The thermospheric disturbances are generated mainly by the thermospheric heating due to the soft electron precipitation and propagate to lower latitudes as large-scale atmospheric gravity waves with the mean horizontal velocity of about 690 m s–1. They reveal appreciable magnitudes at significant distances from the cusp region. The meridional-wind-velocity disturbance at 65° geomagnetic latitude is of the same order (100 m s–1) as the background wind due to the solar heating, but is oppositely directed. The ionospheric disturbances have appreciable magnitudes at the geomagnetic latitudes 70°–85°. The electron-concentration and -temperature disturbances are caused mainly by the ionization and heating processes due to the precipitation, whereas the ion-temperature disturbances are influence strongly by Joule heating of the ion gas due to the electric-field disturbances in the cusp. The latter strongly influence the zonal- and meridional-wind disturbances as well via the effects of ion drag in the cusp region. The results obtained are of interest because of the location of the EISCAT Svalbard Radar in the cusp region and the associated observations at lower latitudes that will be possible using the existing EISCAT UHF and VHF radars. The paper makes predictions for both these regions, and these predictions will be tested by joint observations by ESR, EISCAT UHF/VHF and other ground-based ionosphere/thermosphere observations.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-04-30
    Description: A satellite tomographic campaign was carried out in Russia during January–May 1999. The receiver chain consisted of four sites extending from the north of Karelia to the north of the Kola Peninsula. The F-region electron density measurements were performed during the main seasons (the winter, equinox and summer), and the data contained typical levels of solar activity (F10.7 varied from 100 to 200). The magnetic activity was quite low (Kp = 2 - 3). The Upper Atmosphere Model (UAM), the theoretical model of the Earth’s atmosphere, as well as two known empirical ionospheric models, IRI-95 and RIM-88, have been applied to compare with experimental data. The tomographic images were interpreted by using simulation results obtained by the models which were also compared to one another. The analysis shows the following: (a) all three models show the best agreement with the tomography data at the height 300 km (near hmF2) in comparison with the heights below and above hmF2 (200 and 400 km); (b) all three models systematically underestimate the electron density values in comparison with the tomography data at the height 200 km and overestimate them at the height 400 km; (c) for all investigated events the Ne (UAM) values are closest to Ne (tomo) in 399 of 1125 examined data points (36%), Ne(RIM-88) values are closest to Ne(tomo) in 510 cases (45%) and Ne (IRI-95) values are closest to Ne (tomo) in 216 cases (19%). For the only day-time events, the Ne (UAM) values are closest to Ne (tomo) in 274 of 624 data points (44%), whereas Ne (RIM-88) day-time values are closest to Ne (tomo) in 221 cases (36%) and closest to Ne (IRI-95) values in 129 cases (20%). It means that for all events RIM-88 has the best agreement with the tomography measured electron densities, whereas UAM has the best agreement with the daytime tomography measured electron densities, and IRI-95 has the worst agreement for both daytime and all events; (d) simulated UAM daytime values of electron density near the F2-layer maximum agree with corresponding tomography images for all seasons for the first half of 1999, covering almost the total range of the solar activity, so that no correction of the solar EUV flux (used as an input parameter in the UAM) is required; (e) a necessary correction of simulated precipitating soft electron flux intensities has to be made, in order to improve the consistency between measured night-time values of the electron density and those estimated by the theoretical model; (f) the simulated electron density behaviour caused by spatial, diurnal, seasonal variations, as well as due to a solar activity is consistent with the experimental tomographic images. This indicates a good reliability of both experimental and simulated data (at least in the central part of the examined latitudinal interval).Key words. Ionosphere (auroral ionosphere; modeling and forecasting)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-01-01
    Print ISSN: 1364-6826
    Electronic ISSN: 1879-1824
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1420-9136
    Keywords: Model ; thermosphere ; ionosphere ; protonosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In this paper the formulation of the problem and preliminary numerical computation results of the thermosphere-ionosphere-protonosphere system parameters are discussed. The model constructed describes time-dependent distributions of the multicomponent near-earth space plasma parameters by means of numerical integration of the appropriate three-dimensional plasma hydrodynamic equations. In the thermospheric block of the model, global distribution of neutral gas temperature and N2, O2, O concentrations, as well as three-dimensional circulation of the neutral gas are calculated in the range of height from 80 km to 520 km. In the ionospheric section of the model, global time-dependent distribution of ion and electron temperatures, as well as molecular and atomic O+, H+ ion concentrations are calculated. Global two-dimensional distribution of electric potential is calculated taking into account computed thermosphere and ionosphere parameters. The inputs needed for our global model are the solar EUV spectrum; the auroral precipitation pattern; the distribution of the field-aligned currents and the model of the geomagnetic field. Preliminary results are obtained without regard to electromagnetic plasma drift for the solar minimum, low geomagnetic activity and spring equinox conditions. Global distributions of the calculated parameters in the magnetic dipole latitude-longitude frame are presented for 1200 UT. In the summary ignored processes and future direction are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...