Skip to main content
Log in

Global model of the thermosphere-ionosphere-protonosphere system

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

In this paper the formulation of the problem and preliminary numerical computation results of the thermosphere-ionosphere-protonosphere system parameters are discussed.

The model constructed describes time-dependent distributions of the multicomponent near-earth space plasma parameters by means of numerical integration of the appropriate three-dimensional plasma hydrodynamic equations. In the thermospheric block of the model, global distribution of neutral gas temperature and N2, O2, O concentrations, as well as three-dimensional circulation of the neutral gas are calculated in the range of height from 80 km to 520 km. In the ionospheric section of the model, global time-dependent distribution of ion and electron temperatures, as well as molecular and atomic O+, H+ ion concentrations are calculated. Global two-dimensional distribution of electric potential is calculated taking into account computed thermosphere and ionosphere parameters.

The inputs needed for our global model are the solar EUV spectrum; the auroral precipitation pattern; the distribution of the field-aligned currents and the model of the geomagnetic field.

Preliminary results are obtained without regard to electromagnetic plasma drift for the solar minimum, low geomagnetic activity and spring equinox conditions. Global distributions of the calculated parameters in the magnetic dipole latitude-longitude frame are presented for 1200 UT. In the summary ignored processes and future direction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcayde, D. (1981),An analytical static model of temperature and composition from 20 to 2000 km altitude. Ann. Geophys.37, 515–528.

    Google Scholar 

  • Anderson, D. N. (1973),A theoretical study of the ionospheric F-region equatorial anomaly-1. Theory. Planet. Space Sci.21, 409–419.

    Google Scholar 

  • Anderson, D. N. (1981),Modelling the ambient, low latitude F-region ionosphere—A review. J. Atmos. Terr. Phys.43, 753–762.

    Google Scholar 

  • Bailey, G. J. (1978),Interhemispheric flow of thermal plasma in a closed magnetic flux tube at mid-latitudes under sunspot minimum conditions. Planet. Space Sci.26, 753–765.

    Google Scholar 

  • Caledonia, G. E. andKennealy, J. P. (1982),NO infrared radiation in the upper atmosphere. Planet. Space Sci.30, 1043–1055.

    Google Scholar 

  • Deminov, M. G. andHegai, V. V. (1981),Analytical approximation of the ionization production rate by auroral electrons (in Russian). Geomag. i Aeronomiya20, 145–147.

    Google Scholar 

  • Dickinson, R. E., Ridley, E. C. andRoble, R. C. (1981),Three-dimensional general circulation model of the thermosphere. J. Geophys. Res.86, 1499–1512.

    Google Scholar 

  • Dickinson, R. E., Ridley, E. C. andRoble, R. C. (1984),Thermospheric general circulation with coupled dynamics and composition. J. Atmos. Sci.41, 205–219.

    Google Scholar 

  • Fejer, B. G., Farley, D. T., Woodman, R. F. andCalderon, C. (1979),Dependence of equatorial F-region vertical drifts on season and solar cycle. J. Geophys. Res.84, 5792–5796.

    Google Scholar 

  • Fuller-Rowell, T. J. andRees, D. (1980),A three-dimensional time-dependent global model of the thermosphere. J. Atmos. Sci.37, 2545–2567.

    Google Scholar 

  • Fuller-Rowell, T. J. andRees D. (1983),Derivation of conservation equation for two-constituent gas within a three-dimensional time-dependent model of the thermosphere. Planet. Space Sci.31, 1209–1222.

    Google Scholar 

  • Gizler, V. A., Semenov, V. S. andTroshichev, O. A. (1979),Electric fields and currents in the ionosphere generated by field aligned currents observed by Triad. Planet. Space Sci.27, 223–231.

    Google Scholar 

  • Glushakov, M. L. (1979),About large-scale electric field in the dynamo-region of the ionosphere (in Russian). Geomag. i Aeronomiya19, 45–52.

    Google Scholar 

  • Gordiets, B. F., Markov, M. N. andShelepin, L. A. (1978),IR-radiation of the upper atmosphere. Planet. Space Sci.26, 933–947.

    Google Scholar 

  • Gordiets, B. F., Kulikov, Yu. N., Markov, M. N. andMarov, M. Ya. (1982),Numerical modeling of the thermosphere heat budget. J. Geophys. Res.87, 4504–4514.

    Google Scholar 

  • Hardy, D. A. andGussenhoven, M. S. (1985),A statistical model of auroral electron precipitation. J. Geophys. Res.90, 4229–4248.

    Google Scholar 

  • Harel, M., Wolf, R. A., Reiff, P. H., Spiro, R. W., Burke, M. J., Rich, F. J. andSmiddy, M. (1981),Quantitative simulation of a magnetospheric substorm. 1. Model logic and overview. J. Geophys. Res.86, 2217–2241.

    Google Scholar 

  • Hedin, A. E., Reber, C. A., Newton, N. W., Spencer, N. W., Brinton, H. C., Mayr, H. G. andPotter, W. E. (1977),A global thermospheric model based on mass-spectrometer and incoherent scatter data, MSIS2, composition. J. Geophys. Res.82, 2148–2156.

    Google Scholar 

  • Iijima, T., Potemra, T. A. (1976),The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res.81, 2165–2174.

    Google Scholar 

  • Ivelskaya, M. K., Ivanov-Kholodny, G. S., Katyushina, V. V. andKlimov, N. N. (1970),Daily variations of oxygen in the region of 65–200 km (in Russian). Geomag. i Aeronomiya10, 1048–1052.

    Google Scholar 

  • Jacchia, L. G. (1977),Thermospheric temperature, density and composition: New models. SAO Special Report, N 375, pp. 106.

    Google Scholar 

  • Karpov, I. V., Smertin, V. M. andBessarab, F. S. Three-dimensional, time-dependent model of the thermosphere (in Russian), InIonosph. Issled. N42 (sov. Radio, Moscow. 1987), pp. 90–94.

    Google Scholar 

  • Klimenko, V. V. andNamgaladze, A. A. (1980),About the role of convection in formation of trough and plasmapause (in Russian). Geomag. i Aeronomiya20, 946–950.

    Google Scholar 

  • Klimenko, V. V. (1983),Role of ions motion inertia in formation of trough and plasmapause (in Russian). Geomag. i Aeronomiya23, 915–918.

    Google Scholar 

  • Knudsen, W. C. (1974),Magnetospheric convection and the high-latitude F2 ionosphere. J. Geophys. Res.79, 1046–1055.

    Google Scholar 

  • Knudsen, W. C., Banks, P. M., Winnigham, J. D., Klumpar, D. M. (1977),Numerical model of the convecting F2 ionosphere at high latitudes. J. Geophys. Res.,82, 4784–4792.

    Google Scholar 

  • Kolesnik, A. G. andGolikov, I. A. (1982),Three-dimensional model of high-latitude F-region with accounting of offset between geographic and geomagnetic co-ordinates (in Russian). Geomag. i Aeronomiya22, 725–731.

    Google Scholar 

  • Kolesnik, A. G. andKorolev, S. S. (1983),Three-dimensional model of the thermosphere (in Russian). Geomag. i Aeronomiya23, 774–781.

    Google Scholar 

  • Krinberg, I. A. andTashchilin, A. V. (1980),The influence of the ionosphere-plasmasphere coupling upon the latitude variations of ionospheric parameters. Ann. Geophys.36, task. 4, 537–548.

    Google Scholar 

  • Laytsky, W. B. Current systems of magnetosphere-ionosphere disturbances (in Russian) (Nauka, Leningrad, 1978), pp. 200.

    Google Scholar 

  • Marchuk, G. I. (1974),A numerical solution of dynamical problems of ocean and atmosphere (in Russian) (Gidrometeoizdat, Leningrad, (1974), pp. 303.

    Google Scholar 

  • Marubashi, K. (1979),Effects of convection electric fields on the thermal plasma flow between the ionosphere and the protonosphere. Planet. Space Sci.27, 603–615.

    Google Scholar 

  • Matafonov, G. K. (1986),Distribution of energy losses of photoelectrons between ionosphere and plasmasphere (in Russian), InIssled. Geomag. Aeronom. i Phys. Solnca, N75, 73–78.

  • Moffet, R. J., Murphy, J. A. (1973),Coupling between the F-region and protonosphere: numerical solution of the time-dependent equations. Planet. Space Sci.21, 43–52.

    Google Scholar 

  • Mozhaev, A. M. andOsipov, N. K. (1977),Polar ionosphere structure and magnetospheric plasma convection beyond the plasmapause (in Russian). Geomag. i Aeronomiya17, 273–279.

    Google Scholar 

  • Mozhaev, A. M. andOsipov, N. K. (1981),Analytical models of electric field and field-aligned currents (in Russian). Geomag. i Aeronomiya21, 346–351.

    Google Scholar 

  • Namgaladze, A. A., Latishev, K. S., Korenkov, Yu. N. andZakharov, L. P. (1977),Dynamical model of the mid-latitude ionosphere for a height range from 100 to 1000 km. Acta Geophys. Polonica25, 173–182.

    Google Scholar 

  • Namgaladze, A. A., Klimenko, V. V. andSaenko, Yu. S. Modelling of the ionospheric trough and plasmapause (in Russian). InDynam. Proc. i Struk. Pol. Ionosph. (Nauka, Apatity, 1980), pp. 3–10.

    Google Scholar 

  • Namgaladze, A. A., Korenkov, Yu. N., Klimenko, V. V., Karpov, I. V. andSurotkin, V. A. The global prediction model of the disturbance ionosphere. Formulation of the task (in Russian). InPrognoz. Ionosph. i Uslov. Rasp. Radiovoln (Nauka, Moscow, 1985), pp. 3–13.

    Google Scholar 

  • Ogawa, T. andShimazaki, T. (1975),Diurnal variations of odd nitrogen and ionic densities in the mesosphere and lower thermosphere: simultaneous solution of photochemical-diffusive equations. J. Geophys. Res.80, 3945–3960.

    Google Scholar 

  • Poljakov, V. M., Popov, G. V., Koen, M. A. andKhazanov, G. V. (1975),A mathematical model of dynamics and energetics of the plasma component in the ionosphere and the plasmasphere (in Russian). InIssled. Geomag. Aeronom. i Phys. Solnca, N33, pp. 3–16.

  • Pudovkin, M. I. andZakharov, V. E. Dynamic processes investigation in magnetospheric plasma (in Russian), InMagnetosph. Issled. (Radio i Svajz, Moscow, 1984), N2, pp. 67–85.

    Google Scholar 

  • Quegan, S., Bailey, G. J., Moffet, R. J., Heelis, R. A., Fuller-Rowell, T. J., Rees, D. andSpiro, R. W. (1982),A theoretical study of the distribution of ionization in the high-latitude ionosphere and the plasmasphere: First results on the mid-latitude trough and the light-ion trough. J. Atmos. Terr. Phys.44, 619–640.

    Google Scholar 

  • Richmond, A. D., Blanc, M., Emery, B. A., Wand, R. H., Fejer, B. G., Woodman, R. F., Ganguly, S., Amayenc, P., Behnke, R. A., Calderon, C. andEvans, J. V. (1980),An empirical model of quiet-day ionospheric electric fields at middle and low latitudes. J. Geophys. Res.85, 4658–4664.

    Google Scholar 

  • Saenko, Yu. S., Natsvalyan, N. S., Tepenitsyna, N. Yu. andYakimova, G. A. A simple threedimensional model of F2-layer of ionosphere (in Russian). InVariacii Ionosph. vo Vremya Magnetosph. Vozmush. (Nauka, Moscow, 1980), pp. 11–16.

    Google Scholar 

  • Samarsky, A. A. (1974),Introduction to the Difference Scheme Theory (in Russian), Nauka, Moscow), pp. 552.

    Google Scholar 

  • Schunk, R. W. andWalker, J. C. G. (1972),Oxygen and hydrogen ion densities above Millstone Hill. Planet Space Sci.20, 581–589.

    Google Scholar 

  • Schunk, R. W. andWalker, J. C. G. (1973),Theoretical ion densities in the lower ionosphere. Planet Space Sci.21, 1875–1896.

    Google Scholar 

  • Schunk, R. W. andRaitt, W. J. (1980),Atomic nitrogen and oxygen ions in the daytime high-latitude F-region. J. Geophys. Res.85, 1255–1272.

    Google Scholar 

  • Serebryakov, B. E. (1982),Investigation of processes in the thermosphere during the magnetic disturbances (in Russian). Geomag. i Aeronomiya22, 776–782.

    Google Scholar 

  • Shimazaki, T. (1971),Effective eddy diffusion coefficient and atmospheric composition in the lower thermosphere. J. Atmos. Terr. Phys.33, 1383–1401.

    Google Scholar 

  • Sojka, J. J., Raitt, W. J. andSchunk, R. W. (1981a),A theoretical study of the high-latitude winter F-region of solar minimum for low magnetic activity. J. Geophys. Res.86, 609–621.

    Google Scholar 

  • Sojka, J. J., Raitt, W. J. andSchunk, R. W. (1981b),Theoretical predictions for ion composition in the high-latitude winter F-region for solar minimum and low magnetic activity. J. Geophys. Res.86, 2206–2216.

    Google Scholar 

  • Sojka, J. J., Raitt, W. J. andSchunk, R. W. (1981c),Plasma density features associated with strong convection in the winter high-latitude F-region. J. Geophys. Res.86, 6968–6976.

    Google Scholar 

  • Sojka, J. J. andSchunk, R. W. (1985),A theoretical study of the global F-region for June solstice, solar maximum and low magnetic activity. J. Geophys. Res.90, 5285–5298.

    Google Scholar 

  • Stubbe, P. (1970),Simultaneous solution of the time-dependent coupled continuity equations, heat conduction equations and equations of motion for a system consisting of a neutral gas, an electron gas and a fourcomponents ion gas. J. Atmos. Terr. Phys.32, 865–903.

    Google Scholar 

  • Stubbe, P. andWarnum, W. S. (1972),Electron energy transfer rates in the ionosphere. Planet. Space Sci.20, 1121–1126.

    Google Scholar 

  • Surotkin, V. A., Klimenko, V. V. andNamgaladze, A. A. Numerical model of the equatorial ionosphere (in Russian). InIssled. Ionosph. Dynam. (IZMIRAN, Moscow, 1979), pp. 58–68.

    Google Scholar 

  • Takeda, M. (1982),Three-dimensional ionospheric currents and field aligned currents generated by asymmetrical dynamo action in the ionosphere. J. Atmos. Terr. Phys.44, 187–193.

    Google Scholar 

  • Torr, D. G. andTorr, M. R. (1979),Chemistry of the thermosphere and ionosphere. J. Atmos. Terr. Phys.41, 797–839.

    Google Scholar 

  • Vlasov, M. N. andDavydov, V. E. (1981),Investigation of theoretical description of distribution of the main neutral components of the upper atmosphere (in Russian). Geomag. i Aeronomiya21, 683–688.

    Google Scholar 

  • Volland, H. (1975),Models of global electric fields within the magnetosphere. Ann. Geophys.31, 159–173.

    Google Scholar 

  • Volland, H. (1978),A model of the magnetospheric electric convection field. J. Geophys. Res.83, 2695–2699.

    Google Scholar 

  • Wagner, C. U., Mohlman, D., Schafer, K., Mishin, V. M. andMatveev, M. I. (1980),Large-scale electric fields and currents and related ferromagnetic variations in the quiet plasmasphere. Space Sci. Rev.26, 392–446.

    Google Scholar 

  • Wolf, R. A. (1970),Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere. J. Geophys. Res.75, 4677–4698.

    Google Scholar 

  • Wolf, R. A. andJaggi, R. K. (1973),Can the magnetospheric electric field penetrate to the low-latitude ionosphere? Comm. Astroph. and Space Phys.5, 99–107.

    Google Scholar 

  • Young, E. R., Torr, D. G. Richards, P. andNagy, A. F. (1980),A computer simulation of the midlatitude plasmasphere and ionosphere. Planet. Space Sci.26, 881–893.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namgaladze, A.A., Korenkov, Y.N., Klimenko, V.V. et al. Global model of the thermosphere-ionosphere-protonosphere system. PAGEOPH 127, 219–254 (1988). https://doi.org/10.1007/BF00879812

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879812

Key words

Navigation