ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A comprehensive study was undertaken on the specific role of rubber on toughening when other rigid polymer or non-polymer phases were present. Nylon 6,6/SAN blends of various SAN concentrations ranging from pure SAN to pure nylon 6,6 were investigated with and without fibre reinforcements. These results could be compared with the toughness values of unreinforced and fibre-reinforced nylon 6,6/ABS alloys from a previous study in order to elucidate the role of rubber. Fracture behaviour was investigated rigorously by characterizing the fracture initiation toughness, JIC, and the steady-state fracture toughness, Jss. These were then related to the microstructure and failure modes determined by microscopy and fractography methods. It was found that rubber increased both fracture initiation and propagation toughness in the presence of the rigid phase, while the rigid phase toughened the alloy only when the rigid phase/matrix interface was strong enough. The role played by glass fibres was found to be critically related to the fibre/matrix interfacial strength. Toughening was generally observed, both in the presence and absence of rubber, when the interface was strong. In all cases toughening could be related to the enhancement of plasticity in the crack tip by the presence of the rubber phase or the reinforcing glass phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The deformation behaviour and the fracture resistance of a range of nylon 6,6/ABS alloys of varying composition both with and without the presence of glass fibres were investigated. The deformation behaviour was characterized by careful measurements of the volumetric strain during tensile tests in order to understand the relative roles of cavitation and shear yielding in these materials. The fracture resistance was investigated in detail in the fracture mechanics sense by characterizing the J-integral fracture initiation toughness. In materials exhibiting stable crack growth, a new parameter, namely, the plateau value of the J-integral fracture resistance curve, was measured directly and represented the resistance of the material to stable crack growth. The results showed that the relationship between the deformation behaviour and fracture resistance was related to the extent of damage that developed in the crack-tip zone. Substantial additional toughening was developed during the crack extension stage both in the presence and absence of glass fibres. Glass fibres were found to promote shear yielding and, as a result, enhance both the fracture initiation as well as the fracture propagation resistance of the nylon 6,6/ABS alloys.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 27 (1992), S. 1085-1100 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Toughening mechanisms in a hybrid amorphous thermoplastic composite containing both distributed rubber particles and rigid glass fibres have been investigated. Tensile properties were measured for a range of materials with varying rubber particle and glass-fibre contents, and different rubber particle sizes. Fracture toughness was characterized by separating the overall fracture into its initiation and propagation components. Deformation and fracture modes at crack tips were optically characterizedin situ during loading. The results indicate that both initiation and propagation toughness are enhanced by rubber particle additions to the glass-fibre reinforced composite. Synergistic effects between glass fibres and rubber particles are identified: for example, glass fibres inhibit crazing at rubber particles, and rubber particles tend to promote crazing at fibre/matrix interfaces and also void initiation at fibre ends. Toughening mechanisms are discussed in the light of available models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The effects of glass fibres and annealing on the microstructures and spherulitic morphology of a glass fibre-reinforced nylon 6,6 were investigated. The annealing effects on matrix crystallinity of nylon 6,6 composites with varying glass fibre contents were measured and the morphology of the composites were examined using both the microtomed bulk samples and thin composite films prepared by melt crystallization. It was found that fibre breakage during injection moulding was significant for composites with glass content higher than 20 wt%, and the spherulite size as well as the crystallinity were reduced by the additions of glass fibres. Upon annealing, the start of a log time rate increase of matrix crystallinity was delayed by the addition of glass fibres. Glass fibre-induced transcrystallinity was not observed in injection-moulded composites; however, columnar spherulites were found to develop along the glass fibres in melt-crystallized thin composite films. Differences in morphological observations between the two sample preparation methods are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The effects of glass-fibre reinforcement and annealing on the deformation and fracture behaviour of nylon 6,6 were investigated. The roles of glass fibres were examined by varying the glass fibre content and the fibre length, and by in situ fracture studies in front of crack tips. The effects of microstructural changes were investigated by imposing various annealing conditions on the specimens. The results indicated that the fracture toughness showed a sharp decrease due to stress concentrations at fibre ends when the fibre volume fraction was small. Above a critical fibre volume fraction, it was found that the fracture toughness can be substantially increased by enhanced localized matrix plasticity at fibre ends. The competing roles of glass fibre ends were consistent with microstructure sensitive fracture mechanics models of failure based on the attainment of a critical stress or strain over a critical microstructural distance in the crack-tip region. Upon annealing above a critical annealing time the unreinforced nylon 6,6 showed a drastic decrease in the strength and ductility, corresponding to a loss of the constant-load deformation region prior to necking. However, the fracture toughness of unreinforced nylon 6,6 was only moderately reduced by annealing. On the other hand, the fracture toughness of the composites showed a significant increase upon annealing. The combined effects of glass fibres and annealing on microstructures and overall property optimization of the composites are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The role of rubber particle type, location and morphology on toughening in blends of nylon 6,6 with styrene acrylonitrile (SAN), with and without fibre reinforcements was examined in this study. The rubber used was ethylene propylene diene monomer (EPDM) rubber and the results were compared to a previous study that used butadiene rubber. The compositions of the blends ranged from pure nylon 6,6 to pure SAN. EPDM rubber was chemically compatibilized with one of the matrix phases rather than grafted, as in the ABS. In order to study the effect of rubber location on fracture behaviour, the approach was to compatibilize EPDM with either the minor phase or the major phase component of the blend. Attention was focused on fracture initiation toughness and fracture propagation toughness, measured through the parameters J IC and J SS, respectively. J SS refers to the steady-state, or plateau value of the material R-curve and was therefore a measure of total toughness which included the additional component derived from crack extension. The results indicated that EPDM rubber was not as effective a toughening agent as was butadiene in the Acrylonitrile Butadiene Styrene (ABS) system, primarily due to the morphology of EPDM and its interface character with the nylon 6,6 or SAN matrix. It was demonstrated that the embrittlement effects of a second rigid polymer phase can be mitigated by selectively adding rubber to that phase in the alloy or blend. With regard to the role of fibre reinforcement, a strong fibre matrix interface was found to be essential for toughening. Further, the extent of rubber toughening was larger when fibres were present than when fibres were absent, provided the fibre matrix interface was strong. Fibres also, like rubber, enhanced local matrix plasticity as well as reduced the embrittlement effects associated with a second polymer phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-02-10
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1983-02-01
    Print ISSN: 1073-5623
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-04-01
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-01-16
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...