ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-09-19
    Description: Symmetry, Vol. 10, Pages 412: Modeling and Control for a Multi-Rope Parallel Suspension Lifting System under Spatial Distributed Tensions and Multiple Constraints Symmetry doi: 10.3390/sym10090412 Authors: Naige Wang Guohua Cao Lu Yan Lei Wang The modeling and control of the multi-rope parallel suspension lifting system (MPSLS) are investigated in the presence of different and spatial distributed tensions; unknown boundary disturbances; and multiple constraints, including time varying geometric constraint, input saturation, and output constraint. To describe the system dynamics more accurately, the MPSLS is modelled by a set of partial differential equations and ordinary differential equations (PDEs-ODEs) with multiple constraints, which is a nonhomogeneous and coupled PDEs-ODEs, and makes its control more difficult. Adaptive boundary control is a recommended method for position regulation and vibration degradation of the MPSLS, where adaptation laws and a boundary disturbance observer are formulated to handle system uncertainties. The system stability is rigorously proved by using Lyapunov’s direct method, and the position and vibration eventually diminish to a bounded neighborhood of origin. The original PDEs-ODEs are solved by finite difference method, and the multiple constraints problem is processed simultaneously. Finally, the performance of the proposed control is demonstrated by both the results of ADAMS simulation and numerical calculation.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...