ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-05-01
    Description: A membrane polypeptide involved in K+ transport in a higher plant was cloned by complementation of a yeast mutant defective in K+ uptake with a complementary DNA library from Arabidopsis thaliana. A 2.65-kilobase complementary DNA conferred ability to grow on media with K+ concentration in the micromolar range and to absorb K+ (or 86Rb+) at rates similar to those in wild-type yeast. The predicted amino acid sequence (838 amino acids) has three domains: a channel-forming region homologous to animal K+ channels, a cyclic nucleotide-binding site, and an ankyrin-like region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sentenac, H -- Bonneaud, N -- Minet, M -- Lacroute, F -- Salmon, J M -- Gaymard, F -- Grignon, C -- New York, N.Y. -- Science. 1992 May 1;256(5057):663-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochimie et Physiologie Vegetales, ENSA-M/INRA/CNRS URA 573, Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1585180" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Arabidopsis Proteins ; Biological Transport ; Blotting, Southern ; Carrier Proteins/chemistry/genetics ; *Cloning, Molecular ; DNA/genetics ; Deoxyribonuclease EcoRI ; Gene Expression ; Kinetics ; Molecular Sequence Data ; Plant Proteins/chemistry/*genetics ; Plants/*genetics ; Potassium/*metabolism ; Potassium Channels/chemistry/*genetics ; Saccharomyces cerevisiae/*genetics ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; mRNA 3′ processing ; Poly(A) tail ; STS1 ; RNA15
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In a search for proteins associated with Rna15p in processing the 3′ ends of messenger RNAs, we have looked for suppressors that correct, even partially, the thermosensitive growth defect of therna15-2 mutant. Mutations in a single locus that we namedSSM5, were able to suppress both the thermosensitivity of cell growth and the mRNA 3′ processing defect associated with therna15-2 mutation, but only slightly alleviated the thermosensitive growth defect of anrna14-1 mutant. Thessm5-1 mutant is sensitive to hydroxyurea at 37° C, a drug that inhibits DNA synthesis. By screening for complementation of the hydroxyurea-sensitive phenotype we cloned the corresponding wild-type gene and found that it corresponds to the essential geneSTS1 (also namedDBF8). Sts1p has an apparent molecular weight of 30 kDa and was confirmed to be a cytosolic protein by immunofluorescence analysis. Western blot analysis indicates that the thermosensitive mutant strainsrna15-2, rna14-1 andpap1-1 present a very low level of the Rna15p at 37° C. Thessm5-1 mutation restores the level of Rna15p in therna15-2 ssm5-1 double mutant. Use of the two-hybrid system suggests that Sts1p does not interact directly with Rna15p, but may be active as a homodimer. The present data suggest that Sts1p may play a role in the transport of Rna15p from the cytoplasm to the nucleus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-11-01
    Print ISSN: 0378-1119
    Electronic ISSN: 1879-0038
    Topics: Biology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...