ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-12
    Description: In this paper, the stress rupture reliability of Carbon/Epoxy Composite Overwrapped Pressure Vessels (COPVs) is examined utilizing the classic Phoenix model and accounting for the differences between the design and the actual burst pressure, and the liner contribution effects. Stress rupture life primarily depends upon the fiber stress ratio which is defined as the ratio of stress in fibers at the maximum expected operating pressure to actual delivered fiber strength. The actual delivered fiber strength is calculated using the actual burst pressures of vessels established through burst tests. However, during the design phase the actual burst pressure is generally not known and to estimate the reliability of the vessels calculations are usually performed based upon the design burst pressure only. Since the design burst is lower than the actual burst, this process yields a much higher value for the stress ratio and consequently a conservative estimate for the reliability. Other complications arise due to the fact that the actual burst pressure and the liner contributions have inherent variability and therefore must be treated as random variables in order to compute the stress rupture reliability. Furthermore, the model parameters, which have to be established based on stress rupture tests of subscale vessels or coupons, have significant variability as well due to limited available data and hence must be properly accounted for. In this work an assessment of reliability of COPVs including both parameter uncertainties and physical variability inherent in liner and overwrap material behavior is made and estimates are provided in terms of degree of uncertainty in the actual burst pressure and the liner load sharing.
    Keywords: Composite Materials
    Type: NASA/TM-2012-217638 , E-18283
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases on board spacecraft when mass saving is a prime requirement. Substantial weight savings can be achieved compared to all metallic pressure vessels. For example, on the space shuttle, replacement of all metallic pressure vessels with Kevlar COPVs resulted in a weight savings of about 30 percent. Mass critical space applications such as the Ares and Orion vehicles are currently being planned to use as many COPVs as possible in place of all-metallic pressure vessels to minimize the overall mass of the vehicle. Due to the fact that overwraps are subjected to sustained loads during long periods of a mission, stress rupture failure is a major concern. It is, therefore, important to ascertain the reliability of these vessels by analysis, since it is practically impossible to show by experimental testing the reliability of flight quality vessels. Also, it is a common practice to set aside flight quality vessels as "fleet leaders" in a test program where these vessels are subjected to slightly accelerated operating conditions so that they lead the actual flight vessels both in time and load. The intention of fleet leaders is to provide advanced warning if there is a serious design flaw in the vessels so that a major disaster in the flight vessels can be averted with advance warning. On the other hand, the accelerating conditions must be not so severe as to be prone to false alarms. The primary focus of the present paper is to provide an analytical basis for designing a viable fleet leader program for carbon COPVs. The analysis is based on a stress rupture behavior model incorporating Weibull statistics and power-law sensitivity of life to fiber stress level.
    Keywords: Composite Materials
    Type: NASA/TM-2009-215685 , AIAA Paper 2009-2517 , E-17057 , 50th Structures, Structural Dynamics, and Materials Conference; May 04, 2009 - May 07, 2009; Palm Springs, California; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...