ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2013-05-03
    Description: In four yeast strains, Ogataea minuta , Candida parapolymorpha , Pichia anomala and Zygosaccharomyces rouxii , we identified endo-β- N -acetylglucosaminidase (ENGase) homologous sequences by database searches; in each of the four species, a corresponding enzyme activity was also confirmed in crude cell extract obtained from each strain. The O. minuta ENGase (Endo-Om)-encoding gene was directly amplified from O. minuta genomic DNA and sequenced. The Endo-Om-encoding gene contained a 2319-bp open-reading frame; the deduced amino acid sequence indicated that the putative protein belonged to glycoside hydrolase family 85. The gene was introduced into O. minuta , and the recombinant Endo-Om was overexpressed and purified. When the enzyme assay was performed using an agalacto-biantennary oligosaccharide as a substrate, Endo-Om exhibited both hydrolysis and transglycosylation activities. Endo-Om exhibited hydrolytic activity for high-mannose, hybrid, biantennary and (2,6)-branched triantennary N-linked oligosaccharides, but not for tetraantennary, (2,4)-branched triantennary, bisecting N -acetylglucosamine structure and core-fucosylated biantennary N-linked oligosaccharides. Endo-Om also was able to hydrolyze N-glycans attached to RNase B and human transferrin under both denaturing and nondenaturing conditions. Thus, the present study reports the detection and characterization of a novel yeast ENGase.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...