ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉We investigate the relation between geothermal field production and fracture density and orientation in the Ngatamariki and Rotokawa geothermal fields, located in the Taupo Volcanic Zone, New Zealand using shear wave splitting (SWS). We determine the SWS parameters for 17 702 microseismic events across 38 stations spanning close to 4 yr from 2012 to 2015. We compare the strength of anisotropy to changes in field production and injection. We also compare the orientation of the anisotropy to 〈span〉in situ〈/span〉 and regional measurements of maximum horizontal stress orientation. ($S_{\mathrm{ H}_{\mathrm{ max}}}$). Due to the volume of unique events (approximately 160 000), shear wave phases are picked automatically. We carry out automatic SWS measurements using the Multiple Filter Automatic Splitting Technique (MFAST). The SWS measurements are interpreted in the context of stress aligned microcracks. Outside both fields and within Ngatamariki, fast polarizations align with the NE–SW regional orientation of $S_{\mathrm{ H}_{\max}}$. Within Rotokawa a greater complexity is observed, with polarizations tending toward N–S. We observe increases in per cent anisotropy coinciding with the start of production/injection in Ngatamariki and then a later correlated drop in per cent anisotropy and 〈span〉v〈/span〉〈sub〉〈span〉P〈/span〉〈/sub〉/〈span〉v〈/span〉〈sub〉〈span〉S〈/span〉〈/sub〉 ratios in southern Ngatamariki as injection is shifted to the north. This relationship is consistent with pore fluid pressure within the reservoir being affected by local changes in production and injection of geothermal fluids causing cracks to open and close in response.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉We investigate the relation between geothermal field production and fracture density and orientation in the Ngatamariki and Rotokawa geothermal fields, located in the Taupo Volcanic Zone, New Zealand using shear wave splitting (SWS). We determine the SWS parameters for 17,702 micro-seismic events across 38 stations spanning close to four years from 2012 to 2015. We compare the strength of anisotropy to changes in field production and injection. We also compare the orientation of the anisotropy to in-situ and regional measurements of maximum horizontal stress direction ($S_{H_{max}}$). Due to the volume of unique events (approximately 160,000), shear wave phases are picked automatically. We carry out automatic shear wave splitting measurements using the Multiple Filter Automatic Splitting Technique (MFAST). The shear wave splitting measurements are interpreted in the context of stress aligned microcracks. Outside both fields and within Ngatamariki, fast polarizations align with the NE-SW regional orientation of $S_{H_{max}}$. Within Rotokawa a greater complexity is observed, with polarizations tending toward a N-S orientation. We observe increases in percent anisotropy coinciding with the start of production/injection in Ngatamariki and then a later correlated drop in percent anisotropy and 〈span〉v〈/span〉〈sub〉〈span〉P〈/span〉〈/sub〉/〈span〉v〈/span〉〈sub〉〈span〉S〈/span〉〈/sub〉 ratios in southern Ngatamariki as injection is shifted to the north. This relationship is consistent with pore fluid pressure within the reservoir being affected by local changes in production and injection of geothermal fluids causing cracks to open and close in response.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Geophysical Journal International
    Publication Date: 2021-12-22
    Description: In the field of seismic interferometry, cross-correlations are used to extract Green’s function from ambient noise data. By applying a single station variation of the method, using auto-correlations, we are in principle able to retrieve zero-offset reflections in a stratified Earth. These reflections are valuable as they do not require an active seismic source and, being zero-offset, are better constrained in space than passive earthquake based measurements. However, studies that target Moho signals with ambient noise auto-correlations often give ambiguous results with unclear Moho reflections. Using a modified processing scheme and phase-weighted stacking, we determine the Moho P wave reflection time from vertical auto-correlation traces for a test station with a known simple crustal structure (HYB in Hyderabad, India). However, in spite of the simplicity of the structure, the auto-correlation traces show several phases not related to direct reflections. Although we are able to match some of these additional phases in a qualitative way with synthetic modelling, their presence makes it hard to identify the reflection phases without prior knowledge. This prior knowledge can be provided by receiver functions. Receiver functions (arising from mode conversions) are sensitive to the same boundaries as auto-correlations, so should have a high degree of comparability and opportunity for combined analysis but in themselves are not able to independently resolve VP, VS, and Moho depth. Using the timing suggested by the receiver functions as a guide, we observe the Moho S wave reflection on the horizontal auto-correlation of the north component but not on the east component. The timing of the S reflection is consistent with the timing of the PpSs-PsPs receiver function multiple, which also depends only on the S velocity and Moho depth. Finally, we combine P receiver functions and auto-correlations from HYB in a depth-velocity stacking scheme that gives us independent estimates for VP, VS, and Moho depth. These are found to be in good agreement with several studies that also supplement receiver functions to obtain unique crustal parameters. By applying the auto-correlation method to a portion of the EASI transect crossing the Bohemian Massif in central Europe, we find approximate consistency with Moho depths determined from receiver functions and spatial coherence between stations, thereby demonstrating that the method is also applicable for temporary deployments. Although application of the auto-correlation method requires great care in phase identification, it has the potential to resolve both average crustal P and S velocities alongside Moho depth in conjunction with receiver functions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Catalogs of microseismicity are routinely compiled at geothermal reservoirs and provide valuable insights into reservoir structure and fluid movement. Hypocentral locations are typically used to infer the orientations of structures and constrain the extent of the permeable reservoir. However, frequency-magnitude distributions may contain additional, and underused, information about the distribution of pressure. Here, we present a four-year catalog of seismicity for the Rotokawa geothermal field in the central Taupō Volcanic Zone, New Zealand starting two years after the commissioning of the 140 MWe Nga Awa Purua power station. Using waveform-correlation-based signal detection we double the size of the previous earthquake catalog, refine the location and orientation of two reservoir faults and identify a new structure. We find the rate of seismicity to be insensitive to major changes in injection strategy during the study period, including the injectivity decline and shift of injection away from the dominant injector, RK24. We also map the spatial distribution of the earthquake frequency-magnitude distribution, or b-value, and show that it increases from ∼1.0 to ∼1.5 with increasing depth below the reservoir. As has been proposed at other reservoirs, we infer that these spatial variations reflect the distribution of pressure in the reservoir, where areas of high b-value correspond to areas of high pore-fluid pressure and a broad distribution of activated fractures. This analysis is not routinely conducted by geothermal operators but shows promise for using earthquake b-value as an additional tool for reservoir monitoring and management.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-08
    Description: We investigate the relation between geothermal field production and fracture density and orientation in the Ngatamariki and Rotokawa geothermal fields, located in the Taupo Volcanic Zone, New Zealand using shear wave splitting (SWS). We determine the SWS parameters for 17 702 microseismic events across 38 stations spanning close to 4 yr from 2012 to 2015. We compare the strength of anisotropy to changes in field production and injection. We also compare the orientation of the anisotropy to in situ and regional measurements of maximum horizontal stress orientation. (⁠SHmax⁠). Due to the volume of unique events (approximately 160 000), shear wave phases are picked automatically. We carry out automatic SWS measurements using the Multiple Filter Automatic Splitting Technique (MFAST). The SWS measurements are interpreted in the context of stress aligned microcracks. Outside both fields and within Ngatamariki, fast polarizations align with the NE–SW regional orientation of SHmax⁠. Within Rotokawa a greater complexity is observed, with polarizations tending toward N–S. We observe increases in per cent anisotropy coinciding with the start of production/injection in Ngatamariki and then a later correlated drop in per cent anisotropy and vP/vS ratios in southern Ngatamariki as injection is shifted to the north. This relationship is consistent with pore fluid pressure within the reservoir being affected by local changes in production and injection of geothermal fluids causing cracks to open and close in response.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-08
    Description: In September 2014, a five week long slow slip event (SSE) occurred near Gisborne at the northern Hikurangi subduction zone, New Zealand, and was recorded by offshore instruments deployed by the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS) project. Up to 25 cm of slip occurred directly below the HOBITSS array. We calculate shear wave splitting (SWS) and ratios for event-station pairs on HOBITSS ocean bottom seismometers and onshore GeoNet seismic stations to determine the relationship in time and space between slow slip and these seismic properties. Spatial averaging of SWS fast azimuths yields trench-perpendicular fast azimuths in some areas, suggesting that compressive stress from plate convergence closes microcracks and controls anisotropy in the upper-plate. Variations from the trench perpendicular directions are observed near a subducting seamount, with directions closely resembling fracture and fault patterns created by subducting seamounts previously observed in both laboratory and field experiments. Temporal variations in fast azimuths are observed at three stations, two of which are located above the seamount, suggesting measurable variations in stress orientations. During the SSE, median measurements across all offshore stations increase from 1.817 to 1.894 and SWS delay times decrease from 0.178 s to 0.139 s (both changes are significant within 95% confidence intervals). Temporal variations in and delay time are consistent with fluid pressurization below a permeability barrier and movement of fluids during the rupture of a slow-slip patch.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-03
    Description: This dataset contains a high resolution Moho map of the in the Eastern Alps focused on the SWATH-D network. The Moho map was produced by manually picking the Moho on narrow transects (CCP stacks) calculated with the receiver function method. These manual picks were then fit with a spline in 3-D. Three separate and sometimes overlapping maps are included corresponding to the European, Adriatic, and Pannonian Mohos. In addition to Moho depth, Ps travel time and crustal average Vp/Vs are also reported.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-08-15
    Description: We use seismic waveform data from the AlpArray Seismic Network and three other temporary seismic networks, to perform receiver function (RF) calculations and time-to-depth migration to update the knowledge of the Moho discontinuity beneath the broader European Alps. In particular, we set up a homogeneous processing scheme to compute RFs using the time-domain iterative deconvolution method and apply consistent quality control to yield 112 205 high-quality RFs. We then perform time-to-depth migration in a newly implemented 3D spherical coordinate system using a European-scale reference P and S wave velocity model. This approach, together with the dense data coverage, provide us with a 3D migrated volume, from which we present migrated profiles that reflect the first-order crustal thickness structure. We create a detailed Moho map by manually picking the discontinuity in a set of orthogonal profiles covering the entire area. We make the RF dataset, the software for the entire processing workflow, as well as the Moho map, openly available; these open-access datasets and results will allow other researchers to build on the current study. How to cite. Michailos, K., Hetényi, G., Scarponi, M., Stipčević, J., Bianchi, I., Bonatto, L., Czuba, W., Di Bona, M., Govoni, A., Hannemann, K., Janik, T., Kalmár, D., Kind, R., Link, F., Lucente, F. P., Monna, S., Montuori, C., Mroczek, S., Paul, A., Piromallo, C., Plomerová, J., Rewers, J., Salimbeni, S., Tilmann, F., Środa, P., Vergne, J., and the AlpArray-PACASE Working Group: Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database, Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, 2023.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-12-12
    Description: The tectonic structure of the Eastern Alps is heavily debated with successive geophysical studies that are unable to resolve areas of ambiguity (e.g., the presence of a switch in subduction polarity and differing crustal models). In order to better understand this area, we produce a high resolution Moho map of the Eastern Alps based on a dense seismic broadband array deployment. Moho depths were derived from joint analysis of receiver function images of direct conversions and multiple reflections for both the SV (radial) and SH (transverse) components, which enables us to map overlapping and inclined discontinuities. We observe the European Moho to be underlying the Adriatic Moho from the west up to the eastern edge of the Tauern Window. East of the Tauern Window, a sharp transition from underthrusting European to a flat and thinned crust associated with Pannonian extension tectonics occurs, which is underthrust by both European crust in the north and by Adriatic crust in the south. The Adriatic lithosphere underthrusts northward below the Southern Alps and becomes steeper and deeper towards the Dinarides where it dips towards the north-east. Our results suggest that the steep high velocity region in the mantle below the Eastern Alps, observed in tomographic studies, is likely to be of European origin.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-12-11
    Description: Geophysical inverse problems (seismic tomography) are often significantly underdetermined meaning that a large range of parameter values can explain the observed data well within data uncertainties. Markov chain Monte Carlo (McMC) algorithms based on Voronoi cell parameterizations have been used for quantifying uncertainty in seismic tomography for a number of years. Since surface waves constrain absolute shear velocities and receiver functions (RFs) image discontinuities beneath receiver locations, joint inversion of both data types based on McMC become a popular method to reveal the structure near Earth's surface with uncertainty estimates.A one-step 3-D direct inversion based on the reversible jump McMC and 3-D Voronoi tessellation is proposed by inverting for 3-D spatial structure directly from frequency-dependent traveltime measurements and RFs. We take into account the dipping interfaces according to the Voronoi parameterisation, meaning that back azimuth and incidence angle of individual RFs must be taken into account. We present synthetic tests demonstrating the method. Individual inversion of surface wave measurements and RFs show the limitation of inverting the two data sets separately as expected: surface waves are poor at constraining discontinuities while RFs are poor at constraining absolute velocities. The joint solution gives a better estimate of subsurface properties and associated uncertainties. Compared to conventional two-step inversion which may produce bias propagating between two steps and loses valuable lateral structure variations, the direct 3-D direct inversion not only produces more intuitively reasonable results but also provides more interpretable uncertainties.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...