ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The production of lipase by Candida rugosa in batch cultures was studied. The initial concentration of the carbon source employed, oleic acid, had an important effect on the final lipolytic activity levels. The maximum lipase/substrate yield and specific productivity obtained correspond to an initial oleic acid concentration of 2 g/l. At higher concentrations, up to 8 g/l oleic acid, specific productivity decreased. Lipase production was not observed below 1 g/l oleic acid. Lipase inactivation in culture broth due to surface forces and shear stress at the gas/liquid interface was not observed. There was no shear stress denaturation at stirring rates of 250, 500 and 750 rpm. No temperature inactivation was detected up to 50° C. Two different lipases with a similar molecular weight of 60kDa were purified from culture broth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  The production of lipase by Candida rugosa in batch cultures was studied. The initial concentration of the carbon source employed, oleic acid, had an important effect on the final lipolytic activity levels. The maximum lipase/substrate yield and specific productivity obtained correspond to an initial oleic acid concentration of 2 g/l. At higher concentrations, up to 8 g/l oleic acid, specific productivity decreased. Lipase production was not observed below 1 g/l oleic acid. Lipase inactivation in culture broth due to surface forces and shear stress at the gas/liquid interface was not observed. There was no shear stress denaturation at stirring rates of 250, 500 and 750 rpm. No temperature inactivation was detected up to 50° C. Two different lipases with a similar molecular weight of 60 kDa were purified from culture broth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 156-168 
    ISSN: 0006-3592
    Keywords: fed-batch ; Candida rugosa lipase production ; control ; feeding strategy ; on-line monitoring and estimation ; lipase purification ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Simulation studies have predicted that maximum lipase activity is reached with fed-batch operation strategies. In this work, two different fed-batch operational strategies have been studied: constant substrate feeding rate and specific growth rate control. A constant substrate feeding rate strategy showed that maximum aqueous lipolytic activity (55 U/mL) was reached at low substrate feeding rates, whereas lipase tends to accumulate inside the cell at higher rates of substrate addition. In the second fed-batch strategy studied, a feedback control strategy has been developed based on the estimation of state variables (X and μ) from the measurement of indirect variables such as CER by means of mass spectrometry techniques. An on-off controller was then used to maintain the specific growth rate at the desired value by adjusting the substrate feeding rate. A constant specific growth rate strategy gave higher final levels of aqueous lipolytic activity (117 U/mL) at low specific growth rates. At higher specific growth rates the enzyme remained accumulated inside the cell, as was observed with a constant feeding fed-batch strategy. With a constant specific growth rate strategy, lipase production by Candida rugosa was enhanced 10-fold compared to a batch operation. Purification studies have demonstrated that lipolytic and esterasic specific activity ratios of Candida rugosa isoenzymes can be modified by using different operational conditions. These studies have also showed that the isoenzymes obtained in a controlled growth rate strategy are around three- to four-fold more active than those obtained in a constant feeding rate strategy. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 156-168, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 573-584 
    ISSN: 0006-3592
    Keywords: state estimation ; structured modeling ; lipase ; Candida rugosa ; fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A simple structured mathematical model coupled with a methodology of state and parameter estimation is developed for lipase production by Candida rugosa in batch fermentation. The model describes the system according to the following qualitative observations and hypothesis: Lipase production is induced by extracellular oleic acid present in the medium. The acid is transported into the cell where it is consumed, transformed, and stored. Lipase is excreted to the medium where it is distributed between the available oil-water interphase and aqueous phase. Cell growth is modulated by the intracellular substrate concentration. Model parameters have been determined and the whole model validated against experiments not used in their determination. The estimation problem consists in the estimation of three state variables (biomass, intra- and extracellular substrate) and two kinetic parameters by using only the on-line measurement provided by exhaust gas analysis. The presented estimation strategy divides the complex problem into three subproblems that can be solved by stable algorithms. The estimation of biomass (X) and the specific growth rate (μ), is achieved by a recursive prediction error algorithm using the on-line measurement of the carbon dioxide evolution rate. μ is then used to perform an estimation of intracellular substrate and the other kinetic parameter related to substrate transport (A) by an adaptive observer. Extracellular substrate is then evaluated by means of the estimated values of intracellular substrate and biomass through the material balance of the reactor. Simulation and experimental tests showed good performance of the developed estimator, which appears suitable to be used for process control and monitoring. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-04-01
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-04-01
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...