ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-02
    Description: A multi-dimensional, coupled thermal response modeling system for analysis of hypersonic entry vehicles is presented. The system consists of a high fidelity Navier-Stokes equation solver (GIANTS), a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), and a commercial finite element thermal and mechanical analysis code (MARC). The simulations performed by this integrated system include hypersonic flowfield, fluid and solid interaction, ablation, shape change, pyrolysis gas generation and flow, and thermal response of heatshield and structure. The thermal response of the heatshield is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of the entire vehicle can be obtained simultaneously. Representative computations for a flat-faced arc-jet test model and a proposed Mars sample return capsule are presented and discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Twelfth Thermal and Fluids Analysis Workshop; NASA/CP-2002-211783
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Rigid fibrous refractory insulations (TPS tiles) are integral components of many spacecraft thermal protection systems. These materials are composed of refractory fibers With diameters on the order of 1 to 15 micrometers. They are lightweight and have an open, highly porous microstructure. Typical densities are less than 500 kilograms per cubic meters, and porosities generally exceed 0.8. Because of their open porosity, these materials are permeable to gas glow. There are numerous instances in which internal gas transport in a thermal protection system could be important; examples include the penetration of hot boundary-layer gases into the insulation, the flow of decomposition (pyrolysis) products from the interior, the use of convective flows to mitigate ice formation caused by cryopumping, and the design of refractory vents for pressure equilibration during atmospheric entry. Computational analysis of gas flow through porous media requires values of permeability which have not previously been available for the rigid fibrous insulations used in thermal protection systems. This paper will document measurements of permeability for a variety of insulations from NASA's LI, FRCI, and AETB families of lightweight ceramic ablators. The directional anisotropy of permeability and its dependence on gas pressure and material density will be presented. It will be shown that rarified-flow effects are significant in the flow through such materials. Connections will be drawn between the insulation microstructure and permeability. The paper will also include representative computations of flow through rigid fibrous insulations.
    Keywords: Nonmetallic Materials
    Type: AIAA 32nd Thermophysics Conference; Jun 23, 1997 - Jun 25, 1997; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.
    Keywords: Computer Programming and Software
    Type: 2001 Thermal and Fluid Analysis Workshop; Sep 10, 2001 - Sep 14, 2001; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: A system is presented for multi-dimensional, fully-coupled thermal response modeling of hypersonic entry vehicles. The system consists of a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), a commercial finite-element thermal and mechanical analysis code (MARC), and a high fidelity Navier-Stokes equation solver (GIANTS). The simulations performed by this integrated system include hypersonic flow-field, fluid and solid interaction, ablation, shape change, pyrolysis gas generation and flow, and thermal response of heatshield and structure. The thermal response of the ablating and charring heatshield material is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of both the heatshield and the structure can be obtained simultaneously. Representative computations for a proposed blunt body earth entry vehicle are presented and discussed in detail.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 2001 Thermal and Fluid Analysis Workshop; Sep 10, 2001 - Sep 14, 2001; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Phenolic Impregnated Carbon Ablator was the heatshield material for the Stardust probe and is also a candidate heatshield material for the Orion Crew Module. As part of the heatshield qualification for Orion, physical and thermal properties were measured for newly manufactured material, included emissivity, heat capacity, thermal conductivity, elemental composition, and thermal decomposition rates. Based on these properties, an ablation and thermal-response model was developed for temperatures up to 3500 K and pressures up to 100 kPa. The model includes orthotropic and pressure-dependent thermal conductivity. In this work, model validation is accomplished by comparison of predictions with data from many arcjet tests conducted over a range of stagnation heat flux and pressure from 107 Watts per square centimeter at 2.3 kPa to 1100 Watts per square centimeter at 84 kPa. Over the entire range of test conditions, model predictions compare well with measured recession, maximum surface temperatures, and in depth temperatures.
    Keywords: Composite Materials
    Type: TSM-0002 , AIAA Paper 2009-0262 , ARC-E-DAA-TN296 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 09, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Transportation and Safety
    Type: ARC-E-DAA-TN53581 , International Planetary Probe Workshop; Jun 09, 2018 - Jun 15, 2018; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe" design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state vectors from the interplanetary trajectories. Aeroheating correlations were used to generate stagnation point convective and radiative heat flux profiles for several aeroshell shapes and entry masses. High fidelity thermal response models for various Thermal Protection System (TPS) materials were used to size stagnation-point thicknesses, with margins based on previous studies. Backshell TPS masses were assumed based on scaled heat fluxes from the heatshield and also from previous mission concepts. Presentation: We will present an overview of the study scope, highlights of the trade studies and design driver analyses, and the final recommendations of a common probe design and assembly. We will also indicate limitations that the common probe design may have for the different destinations. Finally, recommended qualification approaches for missions will be presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN53719 , International Planetary Probe Workshop (IPPW-2018); Jun 11, 2018 - Jun 15, 2018; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The idea of a single design of a capsule, for atmospheric entry at Venus, Jupiter, Saturn, Uranus, and Neptune and delivery of payloads for in situ scientific experiments, is currently being pursued by a team of scientists and engineers drawn from four NASA centers - Ames, Langley, JPL, and Goddard. For notional suites of instruments (the selection depending on the destination), interplanetary trajectories have been developed by team members at JPL and Goddard. Using the entry states provided by these trajectories, 3DOF atmospheric flight trajectories have been developed by Langley [4] and Ames. The range of entry flight path angles for each destination is chosen such that the deceleration load lies between 50 g (shallow) and 150-200 g (steep) for a 1.5 m (diameter) rigid aeroshell based on a 45deg sphere-cone geometry and an entry mass of 400 kg.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN53538 , International Planetary Probe Workshop; Jun 11, 2018 - Jun 15, 2018; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: In 2011, NASAs Aeronautics Research Mission Directorate (ARMD) funded an effort to develop an ablative thermal protection system (TPS) material that would have improved properties when compared to Phenolic Impregnated Carbon Ablator (PICA) and AVCOAT. Their goal was a conformal material, processed with a flexible reinforcement that would result in similar or better thermal characteristics and higher strain-to-failure characteristics that would allow for easier integration on flight aeroshells than then-current rigid ablative TPS materials. In 2012, NASAs Space Technology Mission Directorate (STMD) began funding the maturation of the best formulation of the game changing conformal ablator, C-PICA. Progress has been reported at IPPW over the past three years, describing C-PICA with a density and recession rates similar to PICA, but with a higher strain-to-failure which allows for direct bonding and no gap fillers, and even more important, with thermal characteristics resulting in half the temperature rise of PICA. Overall, C-PICA should be able to replace PICA with a thinner, lighter weight, less complicated design. These characteristics should be particularly attractive for use as backshell TPS on high energy planetary entry vehicles. At the end of this year, the material should be ready for missions to consider including in their design, in fact, NASAs Science Mission Directorate (SMD) is considering incentivizing the use of C-PICA in the next Discovery Proposal call. This year both scale up of the material to large (1-m) sized pieces and the design and build of small probe heatshields for flight tests will be completed. NASA, with an industry partner, will build a 1-m long manufacturing demonstration unit (MDU) with a shape based on a mid LD lifting body. In addition, in an effort to fly as you test and test as you fly, NASA, with a second industry partner, will build a small probe to test in the Interactive Heating Facility (IHF) arc jet and, using nearly the same design, build the aeroshell and TPS, with instrumentation, for a small probe flight test article, due to fly in 2017. At the end of the year, the C-PICA will be at TRL 5+, and with the flight data in 2017, it will be at TRL 9 for missions needs with C-PICA at a small scale (12 diameter). The scale-up and small probe efforts will be de-scribed in this presentation.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN24105 , International Planetary Probe Workshop; Jun 13, 2015 - Jun 14, 2015; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-10-08
    Description: The objective of the Heatshield for Extreme Entry Environment Technology (HEEET) projects is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. Destinations that have extreme entry environments with heat fluxes 〉 3500 W/sq cm and pressures up to 5 atmospheres, entry environments that NASA has not flown since Pioneer-Venus and Galileo. The scope of the project is broad and can be split into roughly four areas, Manufacturing/Integration, Structural Testing and Analysis, Thermal Testing and Analysis and Documentation. Manufacturing/Integration covers from raw materials, piece part fabrication to final integration on a 1-meter base diameter 45-degree sphere cone Engineering Test Unit (ETU). A key aspect of the project was to transfer as much of the manufacturing technology to industry in preparation to support future mission infusion. The forming, infusion and machining approaches were transferred to Fiber Materials Inc. and FMI then fabricated the piece parts from which the ETU was manufactured.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN67635 , International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions & Engineering (FAR) 2019; Sep 30, 2019 - Oct 03, 2019; Monopoli; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...