ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Miller, Garielle M; Watson, Sue-Ann; McCormick, Mark I; Munday, Philip L (2013): Increased CO2 stimulates reproduction in a coral reef fish. Global Change Biology, 19(10), 3037-3045, https://doi.org/10.1111/gcb.12259
    Publication Date: 2024-03-15
    Description: Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO2) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near-future levels of pCO2 on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO2 treatments [Current-day Control (430 µatm), Moderate (584 µatm) and High (1032 µatm)] for a 9-month period that included the summer breeding season. Unexpectedly, increased CO2 dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO2 treatment. Pairs in the High CO2 group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO2 group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO2. However, any long-term consequences of increased reproductive effort on individuals or populations remain to be determined.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Amphiprion melanopus; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Clutches per month; Clutches per pair; Clutches per pair, standard error; Coast and continental shelf; Eggs area; Eggs area, standard error; Eggs per clutch; Eggs per clutch, standard error; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Hatchling length; Hatchling length, standard error; Identification; Laboratory experiment; Mesocosm or benthocosm; Month; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric titration; Reproduction; Reproductive output per clutch; Reproductive output per clutch, standard error; Salinity; Single species; South Pacific; Species; Temperature, standard deviation; Temperature, water; Treatment; Tropical; Yolk area; Yolk area, standard error
    Type: Dataset
    Format: text/tab-separated-values, 606 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: The continuous increase of anthropogenic CO2 in the atmosphere resulting in ocean acidification has been reported to affect brain function in some fishes. During adulthood, cell proliferation is fundamental for fish brain growth and for it to adapt in response to external stimuli, such as environmental changes. Here we report the first expression study of genes regulating neurogenesis and neuroplasticity in brains of three-spined stickleback (Gasterosteus aculeatus), cinnamon anemonefish (Amphiprion melanopus) and spiny damselfish (Acanthochromis polyacanthus) exposed to elevated CO2. The mRNA expression levels of the neurogenic differentiation factor (NeuroD) and doublecortin (DCX) were upregulated in three-spined stickleback exposed to high-CO2 compared with controls, while no changes were detected in the other species. The mRNA expression levels of the proliferating cell nuclear antigen (PCNA) and the brain-derived neurotrophic factor (BDNF) remained unaffected in the high-CO2 exposed groups compared to the control in all three species. These results indicate a species-specific regulation of genes involved in neurogenesis in response to elevated ambient CO2 levels. The higher expression of NeuroD and DCX mRNA transcripts in the brain of high-CO2–exposed three-spined stickleback, together with the lack of effects on mRNA levels in cinnamon anemonefish and spiny damselfish, indicate differences in coping mechanisms among fish in response to the predicted-future CO2 level.
    Keywords: Acanthochromis polyacanthus; Alkalinity, total; Alkalinity, total, standard deviation; Amphiprion melanopus; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gasterosteus aculeatus; Gene expression (incl. proteomics); Individual ID; Laboratory experiment; mRNA gene expression, relative; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Salinity; Salinity, standard deviation; Single species; South Pacific; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 1474 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nowicki, Jessica P; Miller, Garielle M; Munday, Philip L (2012): Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish. Journal of Experimental Marine Biology and Ecology, 412, 46-51, https://doi.org/10.1016/j.jembe.2011.10.020
    Publication Date: 2024-03-15
    Description: Two of the major threats to coral reefs are increasing sea surface temperature and ocean acidification, both of which result from rising concentrations of atmospheric carbon dioxide (CO2). Recent evidence suggests that both increased water temperature and elevated levels of dissolved CO2 can change the behaviors of fishes in ways that reduce individual fitness, however the interacting effects of these variables are unknown. We used a fully factorial experiment to test the independent and interactive effects of temperature (3 levels: 28.5, 30, and 31.5 °C) and pCO2 (3 levels: averaging 420, 530, and 960 µatm) on food consumption and activity level of juvenile anemonefish Amphiprion melanopus (Bleeker 1852). Experimental levels were consistent with current-day ocean conditions and predictions for mid-century and late-century based on atmospheric CO2 projections. Sibling fish were reared for 21 days from the end of their larval phase in each of the nine treatments, at which time behavioral observations were conducted. Food consumption and foraging activity decreased at the highest temperature. In isolation, CO2 level did not significantly affect behavior; however, there was an interaction with temperature. While rearing at high temperature (31.5 °C) and control (420 µatm) or moderate (530 µatm) CO2 resulted in a reduction of food consumption and foraging activity, rearing at high temperature and high CO2 (960 µatm) resulted in an elevation in these behaviors. Maintaining food consumption and foraging activity in high temperature and CO2 conditions may reduce energy efficiency if the thermal optimum for food assimilation and growth has been exceeded. Maintaining foraging effort might increase predation vulnerability. These results suggest that changes in foraging behaviors caused by the interactive effects of increased SST and CO2 could have significant effects on the growth and survival of juvenile reef fishes by late century.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Amphiprion melanopus; Amphiprion melanopus, activity; Amphiprion melanopus, activity, standard error; Amphiprion melanopus, feeding level; Amphiprion melanopus, feeding level, standard error; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Chordata; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Measured; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; pH meter (Hach meter HQ40D); Salinity; Single species; South Pacific; Temperature; Temperature, water; Temperature, water, standard error; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 252 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Miller, Garielle M; Kroon, F J; Metcalfe, Sarah; Munday, Philip L (2014): Temperature is the evil twin: Effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecological Applications, 25, 603-620, https://doi.org/10.1890/14-0559.1
    Publication Date: 2024-03-15
    Description: Reproduction in many organisms can be disrupted by changes to the physical environment, such as those predicted to occur during climate change. Marine organisms face the dual climate change threats of increasing temperature and ocean acidification, yet no studies have examined the potential interactive effects of these stressors on reproduction in marine fishes. We used a long-term experiment to test the interactive effects of increased temperature and CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus. Adult breeding pairs were kept for 10 months at three temperatures, 28.5°C (+0.0°C), 30.0°C (+1.5°C) and 31.5°C (+3.0°C), cross-factored with 3 CO2 levels, a current day control (417 µatm) and moderate (644 µatm) and high (1134 µatm) treatments consistent with the range of CO2 projections for the year 2100 under RCP8.5. We recorded each egg clutch produced during the breeding season, the number of eggs laid per clutch, average egg size, fertilization success, survival to hatching, hatchling length and yolk provisioning. Adult body condition, hepatosomatic index, gonadosomatic index, and plasma 17beta-estradiol concentrations were measured at the end of the breeding season to determine the effect of prolonged exposure to increased temperature and elevated CO2 on adults, and to examine potential physiological mechanisms for changes in reproduction. Temperature had by far the stronger influence on reproduction, with clear declines in reproduction occurring in the +1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a minimal effect on the majority of reproductive traits measured, but caused a decline in offspring quality in combination with elevated temperature. We detected no significant effect of temperature or CO2 on adult body condition or hepatosomatic index. Elevated temperature had a significant negative effect on plasma 17beta-estradiol concentrations, suggesting that declines in reproduction with increasing temperature were due to the thermal sensitivity of reproductive hormones rather than a reduction in energy available for reproduction. Our results show that elevated temperature exerts a stronger influence than high CO2 on reproduction in A. melanopus. Understanding how these two environmental variables interact to affect the reproductive performance of marine organisms will be important for predicting the future impacts of climate change.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Amphiprion melanopus; Animalia; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard error; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Clutches, survived to hatching; Clutches, survived to hatching , standard error; Clutches per month; Clutches per pair; Clutches per pair, standard error; Coast and continental shelf; Condition index; Condition index, standard error; Containers and aquaria (20-1000 L or 〈 1 m**2); Eggs area; Eggs area, standard error; Eggs per clutch; Eggs per clutch, standard error; Eggs survived to hatching; Eggs survived to hatching, standard error; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gonadosomatic index; Gonadosomatic index, standard error; Hatchling length; Hatchling length, standard error; Hepatosomatic index; Hepatosomatic index, standard error; Laboratory experiment; Month; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Plasma 17beta-estradiol concentration; Plasma 17beta-estradiol concentration, standard error; Potentiometric; Potentiometric titration; Reproduction; Reproductive output per clutch; Reproductive output per clutch, standard error; Reproductive pairs; Salinity; Salinity, standard error; Single species; South Pacific; Species; Temperature; Temperature, water; Temperature, water, standard error; Treatment; Tropical; Yolk area; Yolk area, standard error
    Type: Dataset
    Format: text/tab-separated-values, 2364 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Miller, Garielle M; Watson, Sue-Ann; Donelson, Jennifer M; McCormick, Mark I; Munday, Philip L (2012): Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Climate Change, 2(12), 858-861, https://doi.org/10.1038/nclimate1599
    Publication Date: 2024-03-15
    Description: Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global warming. Yet the ability for marine species to adjust to increasing CO2 levels over many generations is an unresolved issue. Here we show that ocean conditions projected for the end of the century (approximately 1,000 µatm CO2 and a temperature rise of 1.5-3.0 °C) cause an increase in metabolic rate and decreases in length, weight, condition and survival of juvenile fish. However, these effects are absent or reversed when parents also experience high CO2 concentrations. Our results show that non-genetic parental effects can dramatically alter the response of marine organisms to increasing CO2 and demonstrate that some species have more capacity to acclimate to ocean acidification than previously thought.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Amphiprion melanopus; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Length, standard; Length, standard error; Mass; Mass, standard error; Mortality/Survival; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Palm_island; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Salinity; Single species; South Pacific; Species; Survival; Temperature, standard deviation; Temperature, water; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 552 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Allan, Bridie J M; Miller, Garielle M; McCormick, Mark I; Domenici, Paolo; Munday, Philip L (2014): Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proceedings of the Royal Society B-Biological Sciences, 281(1777), 20132179-20132179, https://doi.org/10.1098/rspb.2013.2179
    Publication Date: 2024-03-15
    Description: Rising CO2 levels in the oceans are predicted to have serious consequences for many marine taxa. Recent studies suggest that non-genetic parental effects may reduce the impact of high CO2 on the growth, survival and routine metabolic rate of marine fishes, but whether the parental environment mitigates behavioural and sensory impairment associated with high CO2 remains unknown. Here, we tested the acute effects of elevated CO2 on the escape responses of juvenile fish and whether such effects were altered by exposure of parents to increased CO2 (transgenerational acclimation). Elevated CO2 negatively affected the reactivity and locomotor performance of juvenile fish, but parental exposure to high CO2 reduced the effects in some traits, indicating the potential for acclimation of behavioural impairment across generations. However, acclimation was not complete in some traits, and absent in others, suggesting that transgenerational acclimation does not completely compensate the effects of high CO2 on escape responses.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Amphiprion melanopus; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Direction; Distance; Distance, standard error; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Great_Barrier_Reef_OA; Laboratory experiment; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Proportion; Salinity; Salinity, standard deviation; Single species; South Pacific; Species; Speed, response; Speed, response, standard error; Temperature, water; Temperature, water, standard deviation; Time, standard error; Time in seconds; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 153 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...