ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore :Springer Nature Singapore :
    Keywords: Geophysics. ; Geology. ; Geotechnical engineering. ; Power resources. ; Geophysics. ; Geology. ; Geotechnical Engineering and Applied Earth Sciences. ; Natural Resource and Energy Economics.
    Description / Table of Contents: Introduction to inversion theory -- Elements of probability theory -- Vector spaces of models and data -- Principles of regularization theory -- Linear inverse problems -- Probabilistic methods of inverse problem solution -- Gradient-type methods of non-linear inversion -- Joint inversion based on analytical and statistical relationships between different physical properties -- Joint inversion based on structural similarities -- Joint focusing inversion of multiphysics data -- Joint minimum entropy inversion -- Gramian method of generalized joint inversion -- Probabilistic approach to gramian inversion -- Simultaneous processing and fusion of multiphysics data and images -- Machine learning in the context of inversion theory -- Machine learning inversion of multiphysics data -- Modeling and inversion of potential field data -- Case histories of joint inversion of gravity and magnetic data. .
    Abstract: Different physical or geophysical methods provide information about distinctive physical properties of the objects, e.g., rock formations and mineralization. In many cases, this information is mutually complementary, which makes it natural for consideration in a joint inversion of the multiphysics data. Inversion of the observed data for a particular experiment is subject to considerable uncertainty and ambiguity. One productive approach to reducing uncertainty is to invert several types of data jointly. Nonuniqueness can also be reduced by incorporating additional information derived from available a priori knowledge about the target to reduce the search space for the solution. This additional information can be incorporated in the form of a joint inversion of multiphysics data. Generally established joint inversion methods, however, are inadequate for incorporating typical physical or geological complexity. For example, analytic, empirical, or statistical correlations between different physical properties may exist for only part of the model, and their specific form may be unknown. Features or structures that are present in the data of one physical method may not be present in the data generated by another physical method or may not be equally resolvable. This book presents and illustrates several advanced, new approaches to joint inversion and data fusion, which do not require a priori knowledge of specific empirical or statistical relationships between the different model parameters or their attributes. These approaches include the following novel methods, among others: 1) the Gramian method, which enforces the correlation between different parameters; 2) joint total variation functional or joint focusing stabilizers, e.g., minimum support and minimum gradient support constraints; 3) data fusion employing a joint minimum entropy stabilizer, which yields the simplest multiphysics solution that fits the multi-modal data. In addition, the book describes the principles of using artificial intelligence (AI) in solving multiphysics inverse problems. The book also presents in detail both the mathematical principles of these advanced approaches to joint inversion of multiphysics data and successful case histories of regional-scale and deposit-scale geophysical studies to illustrate their indicated advantages.
    Type of Medium: Online Resource
    Pages: XVI, 369 p. 52 illus., 37 illus. in color. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9789819967223
    Series Statement: Advances in Geological Science,
    DDC: 550
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Amsterdam _[u.a.]_ : Elsevier
    Associated volumes
    Call number: M 02.0293
    In: Methods in geochemistry and geophysics
    Type of Medium: Monograph available for loan
    Pages: XXIII, 609 S.
    Edition: 1st ed.
    ISBN: 0444510893
    Series Statement: Methods in geochemistry and geophysics 36
    Classification:
    A. 2.
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: O 7213 ; 14607
    Type of Medium: Monograph available for loan
    Pages: XXIII, 367 S.
    ISBN: 3540177590
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Eos, Trans., Am. Geophys. Un., Karlsruhe, Nuclear Technology Publ., vol. 86, no. 9, pp. 92 & 94, pp. L21601, (ISBN: 0534351875, 2nd edition)
    Publication Date: 2005
    Keywords: Earthquake precursor: prediction research ; Earthquake precursor: deformation or strain ; Earthquake precursor: Vp/Vs anomalies ; Electromagnetic methods/phenomena ; Proceedings of a conference ; Scattering ; Quality factor ; Tomography ; Travel time ; Rheology ; Non-linear effects
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-15
    Description: Minerals, Vol. 8, Pages 68: Effective-Medium Inversion of Induced Polarization Data for Mineral Exploration and Mineral Discrimination: Case Study for the Copper Deposit in Mongolia Minerals doi: 10.3390/min8020068 Authors: Michael Zhdanov Masashi Endo Leif Cox David Sunwall This paper develops a novel method of 3D inversion of induced polarization (IP) survey data, based on a generalized effective-medium model of the IP effect (GEMTIP). The electrical parameters of the effective-conductivity model are determined by the intrinsic petrophysical and geometrical characteristics of composite media, such as the mineralization and/or fluid content of rocks and the matrix composition, porosity, anisotropy, and polarizability of formations. The GEMTIP model of multiphase conductive media provides a quantitative tool for evaluation of the type of mineralization, and the volume content of different minerals using electromagnetic (EM) data. The developed method takes into account the nonlinear nature of both electromagnetic induction and IP phenomena and inverts the EM data in the parameters of the GEMTIP model. The goal of the inversion is to determine the electrical conductivity and the intrinsic chargeability distributions, as well as the other parameters of the relaxation model simultaneously. The recovered parameters of the relaxation model can be used for the discrimination of different rocks, and in this way may provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-30
    Description: The Saudi Arabian Glass Earth Pilot Project is a geophysical exploration program to explore the upper crust of the Kingdom for minerals, groundwater, and geothermal resources as well as strictly academic investigations. The project began with over 8000 km2 of green-field area. Airborne geophysics including electromagnetic (EM), magnetics, and gravity were used to develop several high priority targets for ground follow-up. Based on the results of airborne survey, a spectral induced polarization (SIP) survey was completed over one of the prospective targets. The field data were collected with a distributed array system, which has the potential for strong inductive coupling. This was examined in a synthetic study, and it was determined that with the geometries and conductivities in the field survey, the inductive coupling effect may be visible in the data. In this study, we also confirmed that time domain is vastly superior to frequency domain for avoiding inductive coupling, that measuring decays from 50 ms to 2 s allow discrimination of time constants from 1 ms to 5 s, and the relaxation parameter C is strongly coupled to intrinsic chargeability. We developed a method to fully include all 3D EM effects in the inversion of induced polarization (IP) data. The field SIP data were inverted using the generalized effective-medium theory of induced polarization (GEMTIP) in conjunction with an integral equation-based modeling and inversion methods. These methods can replicate all inductive coupling and EM effects, which removes one significant barrier to inversion of large bandwidth spectral IP data. The results of this inversion were interpreted and compared with results of drill hole set up in the survey area. The drill hole intersected significant mineralization which is currently being further investigated. The project can be considered a technical success, validating the methods and effective-medium inversion technique used for the project.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-01
    Description: Three-dimensional potential field migration for rapid imaging of entire total-magnetic-intensity (TMI) surveys is introduced, and real time applications are discussed. Potential field migration is based on a direct integral transformation of the measured TMI data into a 3D susceptibility model, which could be directly used for interpretation or as an a priori model for subsequent regularized inversion. The advantage of migration is that it does not require any a priori information about the type of the sources present, nor does it rely on regularization as per inversion. Migration is very stable with respect to noise in measured data because the transform is reduced to the downward continuation of a function that is analytical everywhere in the subsurface. The 3D migration of TMI data acquired over the Reid-Mahaffy test site in Ontario, Canada is used as a test study. Our results are shown to be consistent with those results obtained from 3D regularized inversion as well as the known geology of the area. Interestingly, the migration of raw TMI data produces results very similar to the inversion of diurnally corrected and microleveled TMI data, suggesting that migration could be applied directly to real-time imaging during the acquisition.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-03-01
    Description: Today's mineral exploration is driven by the simple fact that discovery rates have not kept pace with the depletion of existing reserves. To improve discovery rates, there is an industry-wide consensus on the need to increase the “discovery space” by exploring under cover and to greater depths. This attracts increased risks which may be mitigated by improved targeting. To do this, mining geophysics needs to shift toward 3D geological models founded upon improved petrophysical understanding and geophysical inversion. Regardless of the inversion methodology used, all geological constraints manifest themselves in the user's prejudice of an a priori model, upper and lower bounds, and choice of regularization. However, the practice of geologically constrained inversion is not the major problem needing to be addressed. It is known (and accepted) that geology is inherently 3D, and is a result of complex, overlapping processes related to genesis, metamorphism, deformation, alteration and/or weathering. Yet, the mining geophysics community to date has not fully accepted that geophysics should also be 3D, and most often relies on qualitative analysis, 1D inversion, and deposit-scale 2D or 3D inversion. There are many reasons for this unfortunate deficiency, not the least of which has been the lack of capacity of existing 3D inversion algorithms. To date, these have not been able to invert entire surveys with sufficient resolution in sufficient time to practically affect exploration decisions.
    Print ISSN: 1070-485X
    Electronic ISSN: 1938-3789
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-01-01
    Description: Three-dimensional magnetotelluric (MT) inversion is an emerging technique for offshore hydrocarbon exploration. We have developed a new approach to the 3D inversion of MT data, based on the integral equation method. The Tikhonov regularization and physical constraint have been used to obtain a stable and reasonable solution of the inverse problem. The method is implemented in a fully parallel computer code. We have applied the developed method and software for the inversion of marine MT data collected by the Scripps Institution of Oceanography (SIO) in the Gemini prospect, Gulf of Mexico. The inversion domain was discretized into 1.6 million cells. It took nine hours to complete 51 iterations on the 832-processor cluster with a final misfit between the observed and predicted data of 6.2%. The inversion results reveal a resistive salt structure, which is confirmed by a comparison with the seismic data. These inversion results demonstrate that resistive geoelectrical structures like salt domes can be mapped with reasonable accuracy using the 3D inversion of marine MT data.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-07-01
    Description: Time-domain airborne surveys gather hundreds of thousands of multichannel, multicomponent samples. The volume of data and other complications have made 1D inversions and transforms the only viable method to interpret these data, in spite of their limitations. We have developed a practical methodology to perform full 3D inversions of entire time- or frequency-domain airborne electromagnetic (AEM) surveys. Our methodology is based on the concept of a moving footprint that reduces the computation requirements by several orders of magnitude. The 3D AEM responses and sensitivities are computed using a frequency-domain total field integral equation technique. For time-domain AEM responses and sensitivities, the frequency-domain responses and sensitivities are transformed to the time domain via a cosine transform and convolution with the system waveform. We demonstrate the efficiency of our methodology with a model study relevant to the Abitibi greenstone belt and a case study from the Reid-Mahaffy test site in Ontario, Canada, which provided an excellent practical opportunity to compare 3D inversions for different AEM systems. In particular, we compared 3D inversions of VTEM-35 (time-domain helicopter), MEGATEM II (time-domain fixed-wing), and DIGHEM (frequency-domain helicopter) data. Our comparison showed that each system is able to image the conductive overburden and to varying degrees, detect and delineate the bedrock conductors, and, as expected, that the DIGHEM system best resolved the conductive overburden, whereas the time-domain systems most clearly delineated the bedrock conductors. Our comparisons of the helicopter and fixed-wing time-domain systems revealed that the often-cited disadvantages of a fixed-wing system (i.e., response asymmetry) are not inherent in the system, but rather reflect a limitation of the 1D interpretation methods used to date.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...