ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Radiation and environmental biophysics 15 (1978), S. 367-377 
    ISSN: 1432-2099
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Summary Since the reported alterations of permeability of the blood-brain barrier by microwave radiation have implications for safety considerations in man, studies were conducted to replicate some of the initial investigations. No transfer of parenterally-administered fluorescein across the blood-brain barrier of rats after 30 min of 1.2-GHz radiation at power densities from 2–75 mW/cm2 was noted. Increased fluorescein uptake was seen only when the rats were made hyperthermic in a warm-air environment. Similarly, no increase of brain uptake of14C-mannitol using the Oldendorf dual isotope technique was seen as a result of exposure to pulsed 1.3-GHz radiation at peak power densities up to 20 mW/cm2, or in the continuous wave mode from 0.1–50 mW/cm2. An attempt to alter the permeability of the blood-brain barrier for serotonin with microwave radiation was unsuccessful. From these studies it would appear that the brain must be made hyperthermic for changes in permeability of the barrier induced by microwave radiation to occur.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2099
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Summary Ketamine-anesthetized Sprague-Dawley rats were exposed in both E and H orientations to far-field 2.45-GHz continuous-wave radiofrequency radiation (RFR) at a power density of 60 mW/cm2 (whole-body average specific absorption rate of ∼ 14 W/kg). Intermittent exposures were performed in both orientations in the same animal to repeatedly increase colonic temperature from 38.5 to 39.5° C. Tympanic, subcutaneous (sides toward and away from RFR source), and colonic temperature, ECG, arterial blood pressure, and respiratory rate were continuously recorded. The pattern of heat distribution within the animal and the physiological responses were significantly different between E-and H-orientation exposure. Irradiation in E orientation resulted in greater peripheral and tympanic heating, while irradiation in H orientation resulted in greater core heating. Heart rate and blood pressure increased significantly during irradiation and returned to baseline levels when exposure was discontinued; the increases were significantly greater in E than in H orientation. Respiratory rate increased significantly during irradiation in H, but not in E orientation. The physiological responses could have been influenced by the different levels or rates of subcutaneous and tympanic heating, or the differential between core and peripheral heating during E- and H-orientation irradiation. These results suggest that, when interpreting results of RFR exposure, animal orientation during irradiation must be considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 2 (1981), S. 161-167 
    ISSN: 0197-8462
    Keywords: microwave effects on CNS ; pulsed microwaves ; brain calcium efflux ; 1 GHz ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: In this study we investigated the prospect of microwave-induced alteration of 45Ca2+ efflux from rat neural tissue at low pulse repetition frequencies and low power densities under in vitro conditions. Rat cerebral tissue, preloaded with 45Ca2+, was exposed to pulsed-microwave radiation (1-GHz carrier frequency) according to one of several PRF-power density exposure schemes: 16 Hz at 0.5, 1.0, 2.0, or 15 mW/cm2, or 32 Hz at 1.0 or 2.0 mW/cm2 average power density. Measurements of radioactivity in the efflux medium and in the tissue sample were used to calculate an efflux value for each sample. The results indicate that the radiation conditions used did not alter calcium efflux in rat brain tissue.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 5 (1984), S. 315-322 
    ISSN: 0197-8462
    Keywords: brain ; rat ; development ; microwaves ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Timed-pregnancy rats were exposed in a circular waveguide system starting on day 2 of gestation. The system operated at 2,450 MHz (pulsed waves; 8 μs PW; 830 pps). Specific absorption rate (SAR) was maintained at 0.4 W/kg by increasing the input power as the animals grew in size. On day 18 of gestation the dams were removed from the waveguide cages and euthanized; the fetuses were removed and weighed. Fetal brains were excised and weighed, and brain RNA, DNA and protein were determined. Values for measured parameters of the radiated fetuses did not differ significantly from those of sham-exposed fetuses. A regression of brain weight on body weight showed no micrencephalous fetuses in the radiation group when using as a criterion a regression line based on two standard errors of the estimate of the sham-exposed group. In addition, metrics derived from brain DNA (ie, cell number and cell size) showed no significant differences when radiation was compared to sham exposure. We conclude that 2,450-MHz microwave radiation, at an SAR of 0.4 W/kg, did not produce significant alterations in brain organogenesis.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...