ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-10-01
    Description: The San Andreas fault is the longest fault in California and one of the longest strike-slip faults in the world, yet little is known about the aftershocks following the most recent great event on the San Andreas, the M (sub W) 7.8 San Francisco earthquake on 18 April 1906. We conducted a study to locate and to estimate magnitudes for the largest aftershocks and triggered events of this earthquake. We examined existing catalogs and historical documents for the period April 1906 to December 1907, compiling data on the first 20 months of the aftershock sequence. We grouped felt reports temporally and assigned modified Mercalli intensities for the larger events based on the descriptions judged to be the most reliable. For onshore and near-shore events, a grid-search algorithm (derived from empirical analysis of modern earthquakes) was used to find the epicentral location and magnitude most consistent with the assigned intensities. For one event identified as far offshore, the event's intensity distribution was compared with those of modern events, in order to constrain the event's location and magnitude. The largest aftershock within the study period, an M approximately 6.7 event, occurred approximately 100 km west of Eureka on 23 April 1906. Although not within our study period, another M approximately 6.7 aftershock occurred near Cape Mendocino on 28 October 1909. Other significant aftershocks included an M approximately 5.6 event near San Juan Bautista on 17 May 1906 and an M approximately 6.3 event near Shelter Cove on 11 August 1907. An M approximately 4.9 aftershock occurred on the creeping segment of the San Andreas fault (southeast of the mainshock rupture) on 6 July 1906. The 1906 San Francisco earthquake also triggered events in southern California (including separate events in or near the Imperial Valley, the Pomona Valley, and Santa Monica Bay), in western Nevada, in southern central Oregon, and in western Arizona, all within 2 days of the mainshock. Of these triggered events, the largest were an M approximately 6.1 earthquake near Brawley and an M approximately 5.0 event under or near Santa Monica Bay, 11.3 and 31.3 hr after the San Francisco mainshock, respectively. The western Arizona event is inferred to have been triggered dynamically. In general, the largest aftershocks occurred at the ends of the 1906 rupture or away from the rupture entirely; very few significant aftershocks occurred along the mainshock rupture itself. The total number of large aftershocks was less than predicted by a generic model based on typical California mainshock-aftershock statistics, and the 1906 sequence appears to have decayed more slowly than average California sequences. Similarities can be drawn between the 1906 aftershock sequence and that of the 1857 (M (sub W) 7.9) San Andreas fault earthquake.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-08-01
    Description: On 22 October 1916, a moderate earthquake occurred in the vicinity of Tejon Pass and was felt over much of southern California. An intriguing aspect of this event involves reports of ground cracks that formed during the earthquake. We evaluate the reports of ground cracking and attempt to precisely locate the cracks with respect to active faults; we infer that the earthquake produced minor fault rupture along a newly discovered trace of the easternmost Lockwood Valley fault (formerly mapped as the easternmost Big Pine fault) and/or along the San Andreas fault. We also re-evaluate and present new intensity data, and we use a grid-search algorithm (derived from empirical analysis of modern earthquakes) to find the magnitude most consistent with the reported intensities. Although previous authors have attempted to use intensity data to constrain the magnitude of this event, the algorithm we use provides an alternative and statistically more robust determination of the magnitude. Our results suggest M 5.6 (-0.3/+0.2) (at 95% confidence) for the 1916 event, which is consistent with earlier work. The 1916 earthquake appears to have been a rare and remarkable event in terms of its size and location and the production of minor surface rupture.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-01-01
    Description: The 2005 M (sub w) 8.6 Nias-Simeulue earthquake was caused by rupture of a portion of the Sunda megathrust offshore northern Sumatra. This event occurred within an array of continuous Global Positioning System (GPS) stations and produced measurable vertical displacement of the fringing coral reefs above the fault rupture. Thus, this earthquake provides a unique opportunity to assess the source characteristics of a megathrust event from the joint analysis of seismic data and near-field static co-seismic displacements. Based on the excitation of the normal mode data and geodetic data we put relatively tight constraints on the seismic moment and the fault dip, where the dip is determined to be 8 degrees to 10 degrees with corresponding moments of 1.24X10 (super 22) to 1.00X10 (super 22) N m, respectively. The geodetic constraints on slip distribution help to eliminate the trade-off between rupture velocity and slip kinematics. Source models obtained from the inversion of various combinations of the teleseismic body waves and geodetic data are evaluated by comparing predicted and observed long-period seismic waveforms (100-500 sec). Our results indicate a relatively slow average rupture velocity of 1.5 to 2.5 km/sec and long average rise time of up to 20 sec. The earthquake nucleated between two separate slip patches, one beneath Nias and the other beneath Simeulue Island. The gap between the two patches and the hypocentral location appears to be coincident with a local geological disruption of the forearc. Coseismic slip clearly tapers to zero before it reaches the trench probably because the rupture propagation was inhibited when it reached the accretionary prism. Using the models from joint inversions, we estimate the peak ground velocity on Nias Island to be about 30 cm/sec, an order of magnitude slower than for thrust events in continental areas. This study emphasizes the importance of utilizing multiple datasets in imaging seismic ruptures.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
    Publication Date: 2006-12-01
    Description: The Brawley fault zone (BFZ) and the Brawley Seismic Zone constitute the principal transfer zone accommodating strain between the San Andreas and Imperial faults in southernmost California. The BFZ ruptured along with the Imperial fault in the 1940 M (sub w) 6.9 and the 1979 M (sub w) 6.4 earthquakes, although in each case only minor slip apparently occurred on the BFZ; several other episodes of slip and creep have been documented on the BFZ historically. Until this study, it has been unclear whether the past few decades reflect average behavior of the fault. Two trenches were opened and a series of auger holes were bored across three strands of the BFZ at Harris Road to compare the amount of slip observed historically with the displacements observed in the paleoseismic record. Evidence is presented, across the westernmost strand of the BFZ and across the entire BFZ at Harris Road, to show that both the average vertical slip rate observed in modern times (since 1970) and the vertical creep rate (excluding coseismic slip) observed during the 1970s are significantly higher than the long-term average. Across the westernmost strand, the long- term vertical rate is 1.2 (+1.5/-0.5) mm/yr, and the average rate since about A.D. 1710 is determined to be no greater than 2.0 mm/yr; in contrast, the average vertical rate between 1970 and 2004 across that strand was at least 4.3 mm/yr, and the 1970s vertical aseismic creep rate was 10 mm/yr. Likewise, across the entire BFZ, the long-term vertical rate is 2.8 (+4.1/-1.4) mm/yr, whereas the rate between 1970 and 2004 was at least 7.2 mm/yr, and the 1970s aseismic creep rate was 10 mm/yr. The long-term strike-slip rate cannot be determined across any strands of the BFZ but may be significant. In contrast to the commonly accepted higher sedimentation rates inferred for the entire Imperial Valley, we find that the average sedimentation rate on the downthrown side of the BFZ adjacent to Mesquite Basin, in the millennium preceding the onset of agricultural influences, was at most 3.5 mm/yr. Finally, a creep event occurred on the BFZ during our study in 2002 and is documented herein.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-01
    Description: In this paper we investigate the dynamic behavior of a system of interconnected faults in the Brawley Seismic Zone (BSZ) in southern California. The system of faults includes the southern San Andreas Fault (SSAF), the Imperial Fault (IF), and a set of cross faults in the BSZ that may serve as connecting structures between the two larger faults. Geological and seismic evidence imply that the SSAF and IF may have buried extensions that link them together in a large-scale step over, with the cross faults in the BSZ cutting between them. Such a configuration poses the question of whether through-going rupture across the step over is possible in this region, leading to large, plate-boundary scale earthquakes. We investigate potential earthquakes in this region through 3-D dynamic finite element spontaneous rupture modeling. We find that under multiple assumptions about fault stress and fault geometry, through-going rupture is possible, both from north to south and south to north. Participation of the cross faults is facilitated by two factors: absence of rupture on one of the main two faults and a contrast in prestress between the main faults and the cross faults, leading to slow propagation speed on the main faults while maintaining ease of failure on the cross faults. The pattern of rupture propagation and slip is strongly affected by fault-to-fault dynamic stress interactions during the rupture process. The results may have implications for both potential earthquakes in this region, as well as for understanding the dynamics of geometrically complex/branched faults in general.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-10
    Description: We present a new database called Gempa Nusantara which is a collection of 7,380 macroseismic observations for 1,200 historical earthquakes in Indonesia between 1546 and 1950. Scrutinizing preserved private and official documentation from the colonial period in Indonesia, we examined the completeness of this written record based on the gradual expansion of European influence in the Indonesian Archipelago. It was collated from written materials describing the shaking felt during earthquakes in original private and official documentation from Indonesia’s colonial period. Gempa Nusantara is the largest database of uniformly assessed intensities ever assembled for Indonesia, and as such, can correct errors and fill gaps in other modern studies of historical Indonesian earthquakes, as well as palaeoseismic studies such as the coral paleo-geodetic record from Sumatra. Despite the presence of several major active faults, conclusive evidence of earthquake surface rupture during the colonial period was limited to just two events in 1909 and 1933. We also documented extreme co-seismic ground failure in Sumatra in 1936 with striking similarities to those observed on Sulawesi in 2018. From a seismic hazard perspective, we show that the frequencies of observed intensities over the duration of our database correspond well with modern seismic hazard curves for all but a few of Indonesia’s largest cities. Our work on Gempa Nusantara is an important standalone tool for the study of earthquake hazards in Indonesia.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...