ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 1982-03-01
    Description: An experimental study of the motion of small water droplets in both accelerating and decelerating conditions is presented. Droplets with diameters in the range 115-187/im were exposed to propagating N-waves having strengths smaller than 0-03. Droplet-displacement data were obtained by single-frame stroboscopic photography, at an equivalent framing rate of 4000 pictures per second. The data were fitted by means of best-fit polynomials in time, which were used to obtain drag coefficients in accelerating and decelerating flow conditions. In addition to providing drag data for impulsive-type motions, these data show that the unsteady drag follows two entirely distinct trends. In one, applicable to decelerating relative flows, the unsteady drag is always larger than the steady drag at the same Reynolds number. In the other, applicable to accelerating relative flows, the unsteady drag is always smaller than the corresponding steady value. These trends have not been previously known. They give some support to a mechanism recently proposed (see Temkin & Kim 1980) to explain departures of the drag coefficient for a sphere from its steady value; namely, the changes in size of the recirculating region behind the sphere, relative to its steady counterpart at the same Reynolds number. © 1982, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Six Jet A fuels, with varying compositions, were tested for low temperature flowability in a 190-liter simulator tank that modeled a section of a wing tank of a wide-body commercial airplane. The insulated tank was chilled by circulating coolant through the upper and lower surfaces. Flow-ability was determined as a function of fuel temperature by holdup, the fraction of unflowable fuel remaining in the tank after otherwise complete withdrawal. In static tests with subfreezing tank conditions, hold up varied with temperature and fuel composition. However, a general correlation of two or three classes of fuel type was obtained by plotting holdup as a function of the difference between freezing point and boundary-layer temperature, measured 0.6 cm above the bottom tank surface. Dynamic conditions of vibrations and slosh or rate of fuel withdrawal had very minor effects on holdup. Tests with cooling schedules to represent extreme, cold-day flights showed, at most, slight holdup for any combination of fuel type or dynamic conditions. Tests that superimposed external fuel heating and recirculation during the cooldown period indicates reduced hold up by modification of the low-temperature boundary layer. Fuel heating was just as effective when initiated during the later times of the tests as when applied continuously.
    Keywords: PROPELLANTS AND FUELS
    Type: NASA-CR-174938 , NAS 1.26:174938 , D6-52996
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...