ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 24; 856-860
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The feasibility was determined of incorporating the Navier-Stokes computational code, CFL3D, into the supersonic wing design process. The approach taken is of two steps. The first step was to calibrate CFL3D against existing experimental data sets obtained on thin sharp edged delta wings. The experimental data identified six flow types which are dependent on the similarity parameters of Mach number and angle of attack normal to the leading edge. The calibration showed CFL3D capable of simulating these various separated and attached flow conditions. The second step was to use CFL3D to study the initial formation of leading edge separation over delta wings at supersonic speeds. This consisted of examining solutions obtained on a 65 deg delta wing at Mach number of 1.6 with varying cross sectional shapes. Reynolds number was held constant at 1000000 and the Baldwin-Lomax turbulence model was used. The study showed that through the use of leading edge radius and/or camber, the onset of leading edge separation can be delayed to a higher angle of attack than observed on a flat sharp edged wing. Based on the geometries studied, three wind tunnel models are being designed to verify these results.
    Keywords: AERODYNAMICS
    Type: NASA, Ames Research Center, NASA Computational Fluid Dynamics Conference. Volume 2: Sessions 7-12; p 321-342
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.
    Keywords: Aerodynamics
    Type: NASA-TM-4673 , NAS 1.15:4673 , L-17443
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: An experimental and theoretical investigation of the effect of the wing planform and bodies on the supersonic aerodynamics of a low-fineness-ratio, multibody configuration has been conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Force and moment data, flow-visualization data, and surface-pressure data were obtained on eight low-fineness-ratio, twin-body configurations. These configurations varied in inboard wing planform shape, outboard wing planform shape, outboard wing planform size, and presence of the bodies. The force and moment data showed that increasing the ratio of outboard wing area to total wing area or increasing the leading-edge sweep of the inboard wing influenced the aerodynamic characteristics. The flow-visualization data showed a complex flow-field system of shocks, shock-induced separation, and body vortex systems occurring between the side bodies. This flow field was substantially affected by the inboard wing planform shape but minimally affected by the outboard wing planform shape. The flow-visualization and surface-pressure data showed that flow over the outboard wing developed as expected with changes in angle of attack and Mach number and was affected by the leading-edge sweep of the inboard wing and the presence of the bodies. Evaluation of the linear-theory prediction methods revealed their general inability to consistently predict the characteristics of these multibody configurations.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3212 , L-16976 , NAS 1.60:3212
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: An Euler flow solver and a thin layer Navier-Stokes flow solver were used to numerically simulate the supersonic leeside flow fields over delta wings which were observed experimentally. Three delta wings with 75, 67.5, and 60 deg leading edge sweeps were computed over an angle-of-attack range of 4 to 20 deg at a Mach number 2.8. The Euler code and Navier-Stokes code predict equally well the primary flow structure where the flow is expected to be separated or attached at the leading edge based on the Stanbrook-Squire boundary. The Navier-Stokes code is capable of predicting both the primary and the secondary flow features for the parameter range investigated. For those flow conditions where the Euler code did not predict the correct type of primary flow structure, the Navier-Stokes code illustrated that the flow structure is sensitive to boundary layer model. In general, the laminar Navier-Stokes solutions agreed better with the experimental data, especially for the lower sweep delta wings. The computational results and a detailed re-examination of the experimental data resulted in a refinement of the flow classifications. This refinement in the flow classification results in the separation bubble with the shock flow type as the intermediate flow pattern between separated and attached flows.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3035 , L-16751 , NAS 1.60:3035
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data are electronically stored on the CD-ROM. The data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.
    Keywords: Aerodynamics
    Type: NASA-TM-4673/Suppl , NAS 1.15:4673 , L-17443
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
    Keywords: Aerodynamics
    Type: NASA/CP-1999-209692/VOL2 , L-17758C , NAS 1.55:209692/VOL2 , Aerodynamic Performance; Feb 09, 1998 - Feb 13, 1998; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A transonic wind tunnel test of an 8% F/A-18E model was conducted in the NASA Langley Research Center (LaRC) 16 ft Transonic Tunnel (16-ft TT) to investigate on-surface flow physics during stall. The technical approach employed focused on correlating static (or time-averaged) and unsteady wind-tunnel test data to the unsteady wing-stall events using force, moment, pressure, and pressure-sensitive-paint measurements. This paper focuses on data obtained on the pre-production configuration of the F/A-18E aircraft at Mach number of 0.90. The flow unsteadiness occurring on the wing as the wing went through the stall process was captured using the time history of balance and pressure measurements and by calculating the root mean square (RMS) for a number of instrument signals. The second step was to gather global perspectives on the pressures influencing the wing stall process. The abrupt wing stall experienced by the 8% F/A-18E Model was observed to be an unsteady event triggered by the rapid advancement of separation, which had migrated forward from the trailing edge, to the leading-edge flap hingeline over a very small increment in angle of attack. The angle of attack at which this stall occurred varied, from run to run, over an 1 degree increment. The abrupt wing stall was observed, using pressure-sensitive-paint, to occur simultaneously on both wing panels or asymmetrically. The pressure-sensitive paint data and wing-root bending moment data were essential in providing insight to the flow structures occurring over the wing and the possible asymmetry of those flow structures. A repeatability analysis conducted on eight runs of static data provided a quick and inexpensive examination of the unsteady aerodynamic characteristics of abrupt wing stall. The results of the repeatability analysis agreed extremely well with data obtained using unsteady measurement techniques. This approach could be used to identify test conditions for more complex unsteady data measurements using special instrumentation.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2003-0591 , 41st Aerospace Sciences Meeting and Exhibition; Jan 06, 2003 - Jan 09, 2003; Reno, NV.; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A transonic wind tunnel test of an 8% F/A-18E model was conducted in the NASA Langley Research Center (LaRC) 16 ft Transonic Tunnel (16-ft TT) to investigate on-surface flow physics during stall. The technical approach employed focused on correlating static (or time-averaged) and unsteady wind-tunnel test data to the unsteady wing-stall events using force, moment, pressure, and pressure-sensitive-paint measurements. This paper focuses on data obtained on the pre-production configuration of the F/A-18E aircraft at Mach number of 0.90. The flow unsteadiness occurring on the wing as the wing went through the stall process was captured using the time history of balance and pressure measurements and by calculating the root mean square (RMS) for a number of instrument signals. The second step was to gather global perspectives on the pressures influencing the wing stall process. The abrupt wing stall experienced by the 8% F/A-18E Model was observed to be an unsteady event triggered by the rapid advancement of separation, which had migrated forward from the trailing edge, to the leading-edge flap hingeline over a very small increment in angle of attack. The angle of attack at which this stall occurred varied, from run to run, over an 1 deg increment. The abrupt wing stall was observed, using pressure-sensitive-paint, to occur simultaneously on both wing panels or asymmetrically. The pressure-sensitive paint data and wingroot bending moment data were essential in providing insight to the flow structures occurring over the wing and the possible asymmetry of those flow structures. A repeatability analysis conducted on eight runs of static data provided a quick and inexpensive examination of the unsteady aerodynamic characteristics of abrupt wing stall. The results of the repeatability analysis agreed extremely well with data obtained using unsteady measurement techniques. This approach could be used to identify test conditions for more complex unsteady data measurements using special instrumentation.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2003-0591 , 41st Aerospace Sciences Meeting and Exhibit; Jan 06, 2003 - Jan 09, 2003; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
    Keywords: Aerodynamics
    Type: NASA/CP-1999-209692/VOL1/PT2 , L-17758B , NAS 1.55:209692/VOL1/PT2 , 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; NASA/CP-1999-209692/VOL1/PT2|1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Feb 09, 1998 - Feb 13, 1998; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...