ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-06-01
    Print ISSN: 0021-9142
    Electronic ISSN: 2195-0571
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: During the final approach and Entry, Descent and Landing (EDL) of both Mars Exploration Rovers (MER), one-way Doppler were monitored to detect, in real-time, the following events.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrodynamics Specialist Conference; Providence, RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: The Lunar CRater Observation and Sensing Satellite (LCROSS) was competitively selected by the National Aeronautical and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) as a low-cost (〈 $80M) 1000 kg secondary payload to be launched with the Lunar Reconnaissance Orbiter (LRO) in October of 2008. LCROSS is a lunar impactor mission that will investigate the presence or absence of water in a permanently shadowed crater. Following launch, trans-lunar injection (TLI) and separation from LRO, LCROSS will remain attached to the launch vehicle's approximately 2300 kg spent Earth Departure Upper Stage (EDUS) and will guide it toward an impact of a permanently shadowed crater at the lunar South Pole. Hours prior to impact, LCROSS will separate from the EDUS and perform a braking maneuver that will allow the spacecraft to take measurements of the resulting EDUS impact ejecta cloud for several minutes, before impacting the crater as well. As a cost-capped secondary mission that must accommodate specific LRO launch dates, LCROSS faces unique challenges and constraints that must be carefully reconciled in order to satisfy an ambitious set of science observation requirements. This paper examines driving mission requirements and constraints and describes the trajectory design and navigation strategy that shape the LCROSS mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Proceedings of the 20th International Symposium on Space Flight Dynamics; NASA/CP-2007-214158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration; Spacecraft Design, Testing and Performance
    Type: Annual AAS Guidance and Control Conference; Feb 03, 2012 - Feb 08, 2012; Breckenridge, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power; Space Sciences (General)
    Type: AAS/AIAA Astrodynamics Specialist Conference; Aug 09, 2015 - Aug 13, 2015; Vail, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A robotic mission to the Martian moons Phobos and Deimos would offer a wealth of scientific information and serve as a useful precursor to potential human missions. In this paper, we investigate a prospective mission enabled by solar electric propulsion that would explore Phobos via a series of flybys followed by capture into orbit around the moon. Of particular interest are low-cost options for capture and walkdown to the target science orbits aided by multi-body effects due to the mutual gravitational interaction of Phobos and Mars. We also consider contingency operations in the event of missed thrust or maneuver execution errors.
    Keywords: Spacecraft Propulsion and Power; Lunar and Planetary Science and Exploration
    Type: AAS/AIAA Astrodynamics Specialist Conference 2015; Aug 09, 2015 - Aug 13, 2015; Vail, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Galileo spacecraft arrived at Jupiter in December of 1995 to begin an orbital tour of the Jovian system. The objective of the tour was up close study of the planet, its satellites, and its magnetosphere. The spacecraft completed its 11 orbit prime mission in November of 1997 having had 16 successful close encounters with the Galilean satellites (including two prior to Jupiter orbit insertion). Galileo continues to operate and will have made an additional 10 orbits of Jupiter by the date of this Conference. Earlier papers discuss the determination of the spacecraft orbit in support of mission operations from arrival at Jupiter through the first 9 orbits. In this paper we re-examine those earlier orbits and extend the analysis through orbit 12, the first orbit of the Galileo Europa Mission (GEM). The objective of our work is the reconstruction of the spacecraft trajectory together with the development of a consistent set of ephemerides for the Galilean satellites. As a necessary byproduct of the reconstruction we determine improved values for the Jovian system gravitational parameters and for the Jupiter pole orientation angles. Our preliminary analyses have already led to many of the results reported in the scientific literature. Unlike the Galileo Navigation Team which operates in the EME-1950 coordinate system, we elected to work in the (J2000) International Celestial Reference Frame (ICRF), the reference frame of the current JPL planetary and satellite ephemerides as well as the standard frame of the international astronomical and planetary science community. Use of this frame permits more precise modelling of the spacecraft and satellite observations. Moreover, it is the frame of choice for all other operational JPL missions and will probably be the frame for future missions for some time. Consequently, our adoption of the ICRF will facilitate the combination of our results with any obtained from future missions (e.g. the proposed Europa Orbiter mission). In addition, our results may be used by the science community, without need of a reference frame conversion.
    Keywords: Astronautics (General)
    Type: Astrodynamics Specialist Conference; Aug 16, 1999 - Aug 19, 1999; Gridwood, AK; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Mars Exploration Rover project consisted of two missions (MER-A: spirit rover and MER-B: opportunity rover) that launched spacecraft on June 10, 2003, and July 8, 2003, respectively. The spacecraft arrived at Mars approximately seven months later on January 4, 2004, and January 24, 2004. These spacecraft needed to be precisely navigated to a Mars atmospheric entry flight path angle of -11.5 deg +/-0.12 deg (3(sigma)) for MER-A and +/-0.14 deg (3(sigma)) for MER-B in order to satisfy the landing site delivery requirements. The orbit determination task of the navigation team needed to accurately determine the trajectory of the spacecraft, predict the trajectory to Mars atmospheric entry, and account for all possible errors sources so that the each spacecraft could be correctly targeted using five trajectory corrections along the way. This paper describes the orbit determination analysis which allowed MER-A to be targeted using only four trajectory correction maneuvers to an entry flight path angle of -11.49 deg +/-O.010 deg (3(sigma)) and MER-B to be targeted using only three trajectory correction maneuvers to an entry flight path angle of -11.47 +/-0.021 deg(3(sigma)).
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA/AAS Astrodynamics Specialst Conference and Exhibit; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This paper will discuss the system modeling for two nearly identical spacecrafts, Mars Exploration Rovers; Spirit and Opportunity.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA/AAS Astrodynamics Specialist Conference; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The successful delivery of the Mars Exploration Rover (MER) landers to well with in the boundaries of their surface target areas in January of 2004 was the culmination of years of orbit determination analysis. The process began with a careful consideration of the filter parameters used for pre-launch covariance studies, and continued with the refinement of the filter after launch based on operational experience. At the same time, tools were developed to run a plethora of variations around the nominal filter and anlyze the results in ways that had never been previously attempted for an interplanetary mission. In addition to the achieved sub-kilometer Mars B plane orbit determination knowledge, the filter strategy and process responded to unexpected error sources by both detecting them and proving robust. All these facets of the MER orbit determination filter strategy are described in this paper.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA/AAS Astrodynamics Specialist Conference; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...