ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The operational limits observed in spherical tokamaks, notably the small tight aspect ratio tokamak (START) device [A. Sykes et al., Nucl. Fusion 32, 694 (1992)], are consistent with those found in conventional aspect ratio tokamaks. In particular the highest β achieved (∼40%) is consistent with an ideal magneto-hydro-dynamic (MHD) Troyon type limit, the upper limit on density is well described by the Greenwald density (πa2n¯e/Ip∼1) and the normalized current (Ip/aBt) is limited such that q95(approximately-greater-than)2. Stability calculations indicate scope for increasing both normalized β and normalized current beyond the values so far achieved, although wall stabilization is generally needed for low-n modes. In double null configurations current terminating disruptions occur at each of the operational boundaries, though the current quench tends to be slow at the density limit and disruptions at high β may be due to the low q. In early limiter START discharges, before the divertor coils were installed, disruptions rarely occurred. Instead internal reconnection events which have all the characteristics of a disruption except the current quench occurred. These various disruptive behaviors are explained in terms of a model in which helicity is conserved during the disruption. Due to the low toroidal field beam ions in START, and α particles in a ST power plant, are super-Alfvénic. This gives the possibility for toroidal Alfvén eigenmodes (TAEs) to occur and such modes are frequently observed in START neutral beam injection (NBI) discharges, but seem to be benign. The features of these observed TAEs are shown to be in agreement with MHD calculations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 2181-2187 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The influence of energetic ions on the stability of ideal double kink modes in a tokamak plasma with negative magnetic shear is investigated. It is found that the fast ions play a similar role as for the ordinary m=n=1 internal kink. In particular, phenomena analogous to sawtooth stabilization and fishbone excitation are possible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 2994-3003 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Sawtooth oscillations in tokamaks have been stabilized using ion cyclotron resonance heating (ICRH), but often reappear while ICRH continues. It is shown that the reappearance of sawteeth during one particular ICRH discharge in the Joint European Torus (JET) [Campbell et al., Phys. Rev. Lett. 60, 2148 (1988)] was correlated with a change of sign in the energy δW associated with m=1 internal kink displacements. To compute δW, a new analytical model is used for the distribution function of heated minority ions, which is consistent with Fokker–Planck simulations of ICRH. Minority ions have a stabilizing influence, arising from third adiabatic invariant conservation, but also contribute to a destabilizing shift of magnetic flux surfaces. As the minor radius of the q=1 surface rises, the stabilizing influence of minority ions diminishes, and the shape of the plasma cross section becomes increasingly important. It is shown that an increase in ICRH power can destabilize the kink mode: this is consistent with observations of sawteeth in JET discharges with varying levels of ICRH. It is suggested that the sawtooth-free period could be prolonged by minimizing the vertical extent of the ICRH power deposition profile.1996 American Institute of Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ion cyclotron emission (ICE) has been observed during neutral beam-heated supershots in the Tokamak Fusion Test Reactor (TFTR) [Phys. Rev. Lett. 72, 3526 (1994)] deuterium–tritium campaign at fusion product cyclotron harmonics. The emission originates from the outer midplane edge plasma, where fusion products initially have an anisotropic velocity distribution, sharply peaked at a sub-Alfvénic speed. It is shown that the magnetoacoustic cyclotron instability, resulting in the generation of obliquely propagating fast Alfvén waves at fusion product cyclotron harmonics, can occur under such conditions. The time evolution of the growth rate closely follows that of the observed ICE amplitude. Instability is suppressed if the fusion products undergo a moderate degree of thermalization, or are isotropic. In contrast, the super-Alfvénic fusion products present in the outer midplane of the Joint European Torus (JET) [Nucl. Fusion 33, 1365 (1993)] can drive the instability if they are isotropic or have a broad speed distribution. This may help to account for the observation that fusion product-driven ICE in JET persists for longer than fusion product-driven ICE in TFTR supershots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 3407-3413 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A mechanism is proposed for the excitation of waves at harmonics of the injected ion cyclotron frequencies in neutral beam-heated discharges in the Tokamak Fusion Test Reactor (TFTR) [Proceedings of the 17th European Conference on Controlled Fusion and Plasma Heating (European Physical Society, Petit-Lancy, Switzerland, 1990), p. 1540]. Such waves are observed to originate from the outer midplane edge of the plasma. It is shown that ion cyclotron harmonic waves can be destabilized by a low concentration of sub-Alfvénic deuterium or tritium beam ions, provided these ions have a narrow distribution of speeds parallel to the magnetic field. Such a distribution is likely to occur in the edge plasma, close to the point of beam injection. The predicted instability gives rise to wave emission at propagation angles lying almost perpendicular to the field. In contrast to the magnetoacoustic cyclotron instability proposed as an excitation mechanism for fusion-product-driven ion cyclotron emission in the Joint European Torus (JET) [Phys. Plasmas 1, 1918 (1994)], the instability proposed here does not involve resonant fast Alfvén and ion Bernstein waves, and can be driven by sub-Alfvénic energetic ions. It is concluded that the observed emission from TFTR can be driven by beam ions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 1623-1636 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A generalized energy principle is used to determine the effect of ion cyclotron resonant heating (ICRH) on the stability of m=1 internal kink displacements in the low-frequency limit: such displacements are associated with sawtooth oscillations. An integral expression is obtained for the contribution to the plasma energy of an ICRH-heated minority ion population with strong temperature anisotropy, which relates the former to the ICRH power input and its deposition profile. The link is provided by a realistic, but analytically tractable, new model for the distribution function of the heated ions, which is based on the approach of Stix [Nucl. Fusion 15, 737 (1975)]. Numerical evaluation of the integral expression is carried out using parameters inferred from ICRH experiments in the Joint European Torus (JET) [Campbell et al., Phys. Rev. Lett. 60, 2148 (1988)]. It is shown that the ideal m=1 internal kink is stable at values of the poloidal plasma beta βp which typically lie in the range 0.4–1, depending on the radio-frequency power input and the radius r1 of the q=1 surface. Stability is thus possible at values of βp lying significantly above the magnetohydrodynamic instability threshold ((approximately-equal-to)0.3). If the perpendicular temperature T⊥ of the hot ions exceeds the parallel temperature by a factor of 10 or more, and r1 is greater than about one-third of the plasma minor radius, trapped ions have a greater stabilizing effect than passing ions. Stabilization is most easily achieved, however, if r1 is small. The hot-ion plasma energy depends strongly on the value of T⊥, but for fixed T⊥ is insensitive to the degree of anisotropy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 1918-1928 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The theory of the magnetoacoustic cyclotron instability, which has been proposed as a mechanism for suprathermal ion cyclotron harmonic emission observed in large tokamaks, is generalized to include finite parallel wave number k(parallel). This extension introduces significant new physics: the obliquely propagating fast Alfvén wave can undergo cyclotron resonant interactions with thermal and fusion ions, which affects the instability driving and damping mechanisms. The velocity–space distribution of the fusion ions is modeled by a drifting ring, which approximates the distribution calculated for the emitting region in tritium experiments on the Joint European Torus (JET) [Cottrell et al., Nucl. Fusion 33, 1365 (1993)]. Linear instability can occur simultaneously at the fusion ion cyclotron frequency and all its harmonics when the fusion ion concentration is extremely low, because the finite k(parallel) gives rise to a Doppler shift, which decouples cyclotron damping due to thermal ions from wave growth associated with fusion ions. Doppler shifts associated with finite k(parallel) may also be related to the observed splitting of harmonic emission lines.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 109 (1987), S. 355-363 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The conditions required for the stability of a steady-state electron beam propagating in the solar corona are determined using the quasi-linear theory. The growth rate for electron plasma waves in a magnetized plasma is evaluated, with the electron distribution function being given by an analytic solution of the linearized Fokker-Planck equation. It is shown that, when the gyrofrequency is less than the plasma frequency, the instability has a narrow angular range, with the maximum growth rate occuring along the magnetic field. A stability boundary in parameter space is determined, indicating that electron beams must be highly collimated at injection to be Langmuir unstable at any point in space. The implications of the results for alternative models of hard X-ray bursts are discussed and it is argued that Langmuir instability will not occur on either the trap model or the thermal model. Such models would, therefore, be refuted by the detection of a large flux of plasma microwave radiation associated with hard X-ray emission.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Using a 2 1/2-D fully relativistic electromagnetic particle-in-cell code (PIC) we have investigated a potential electron acceleration mechanism in solar flares. The free energy is provided by ions which have a ring velocity distribution about the magnetic field direction. Ion rings may be produced by perpendicular shocks, which could in turn be generated by the super-Alfvénic motion of magnetic flux tubes emerging from the photosphere or by coronal mass ejections (CMEs). Such ion distributions are known to be unstable to the generation of lower hybrid waves, which have phase velocities in excess of the electron thermal speed parallel to the field and can, therefore, resonantly accelerate electrons in that direction. The simulations show the transfer of perpendicular ion energy to energetic electrons via lower hybrid wave turbulence. With plausible ion ring velocities, the process can account for the observationally inferred fluxes and energies of non-thermal electrons during the impulsive phase of flares. Our results also show electrostatic wave generation close to the plasma frequency: we suggest that this is due to a bump-in-tail instability of the electron distribution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 131 (1991), S. 41-48 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The SUMER and CDS instruments on the Solar and Heliopheric Observatory spacecraft (SOHO), due to be launched in 1995, may enable us to identify the dominant mechanism responsible for solar coronal heating. In this paper we examine, in particular, the possibility that Alfvén or acoustic waves, propagating through the corona and heating the ambient plasma, could be detected through the measurement of ultra-violet line widths. The contribution of wave broadening to the total line width depends on the orientation of the magnetic field with respect to the line of sight. CDS may be used to identify the magnetic field geometry in a particular region. The spatial resolution provided by SUMER, superior to that of previous instruments, should then make it possible to discriminate between different broadening mechanisms. In the case of lines produced by heavy ions in the low corona, we find that the line width produced by an Alfvén wave flux sufficiently high to heat the active corona corresponds to a Doppler temperature of up to twenty times the kinetic temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...