ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Blackwell, 2006. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Molecular Ecology Notes 6 (2006): 756-758, doi:10.1111/j.1471-8286.2006.01331.x.
    Description: Outbreaks of paralytic shellfish poisoning caused by the toxic dinoflagellate Alexandrium minutum (Dinophyceae) are a worldwide concern from both the economic and human health points of view. For population genetic studies of A. minutum distribution and dispersal, highly polymorphic genetic markers are of great value. We isolated 12 polymorphic microsatellites from this cosmopolitan, toxic dinoflagellate species. These loci provide one class of highly variable genetic markers, as the number of alleles ranged from 4 to 12, and the estimate of gene diversity was from 0.560 to 0.862 across the 12 microsatellites; these loci have the potential to reveal genetic structure and gene flow among A. minutum populations.
    Description: Support for this research provided in part (to DMA) by U.S. National Science Foundation grants OCE-0136861 and OCE-0430724, and the National Institute of Environmental Health Sciences Grant 1 P50 ES012742-01.
    Keywords: Alexandrium minutum ; Microsatellite ; Paralytic shellfish poisoning ; Phytoplankton ; SSR ; Toxic dinoflagellate
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 189512 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 2 (2012): 2588–2599, doi:10.1002/ece3.373.
    Description: In Massachusetts, paralytic shellfish poisoning (PSP) is annually recurrent along the coastline, including within several small embayments on Cape Cod. One such system, the Nauset Marsh System (NMS), supports extensive marshes and a thriving shellfishing industry. Over the last decade, PSP in the NMS has grown significantly worse; however, the origins and dynamics of the toxic Alexandrium fundyense (Balech) populations that bloom within the NMS are not well known. This study examined a collection of 412 strains isolated from the NMS and the Gulf of Maine (GOM) in 2006–2007 to investigate the genetic characteristics of localized blooms and assess connectivity with coastal populations. Comparisons of genetic differentiation showed that A. fundyense blooms in the NMS exhibited extensive clonal diversity and were genetically distinct from populations in the GOM. In both project years, genetic differentiation was observed among temporal samples collected from the NMS, sometimes occurring on the order of approximately 7 days. The underlying reasons for temporal differentiation are unknown, but may be due, in part, to life-cycle characteristics unique to the populations in shallow embayments, or possibly driven by selection from parasitism and zooplankton grazing; these results highlight the need to investigate the role of selective forces in the genetic dynamics of bloom populations. The small geographic scale and limited connectivity of NMS salt ponds provide a novel system for investigating regulators of blooms, as well as the influence of selective forces on population structure, all of which are otherwise difficult or impossible to study in the adjacent open-coastal waters or within larger estuaries.
    Description: This study was funded through the Woods Hole Center for Oceans and Human Health, National Science Foundation OCE-0430724 and National Institutes of Health 1 P50 ES012742-01, and National Science Foundation OCE-0911031. Funding was also provided by NOAA Grant NA06NOS4780245.
    Keywords: Alexandrium ; Amoebophrya ; Dinoflagellate ; Gulf of Maine ; Microsatellites ; Nauset Marsh ; Paralytic shellfish poisoning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in ICES Journal of Marine Science 63 (2006): 393-399, doi:10.1016/j.icesjms.2005.10.006.
    Description: A number of techniques including expressed sequence tag (EST) analysis, serial analysis of gene expression, and microarrays are available to study the global expression and regulation of genes. Many of these techniques are being used for intensively reared fish such as trout, salmon and catfish to study genes involved in growth, reproduction and health. In contrast, relatively little is known about the composition and regulation of transcriptomes in gadids. However, several bottlenecks in cod mariculture might benefit from the discovery and analysis of genes involved in reproduction, growth and disease. As a result, we have begun EST analysis of genes in the cod ovary. Complimentary DNA (cDNA) libraries of cod ovaries taken from females at oocyte final maturation and ovulation have been constructed, and 1,361 ESTs have been analyzed. As expected, several oocyte-related genes were observed including various zona pellucida egg membrane proteins. However, pivotal cell cycle regulators such as cyclins, genes involved in the regulation of apoptosis such as the Bcl-2-related ovarian killer protein, and hormone receptor components were also observed. Finally, a cDNA for a potential novel cod antifreeze protein was observed 12 times, suggesting the existence of a cod egg-specific antifreeze protein.
    Description: This work was supported in part by grant #139630/140 from the Research Council of Norway to BN and USDA grant #2004-35204-14232 to FWG.
    Keywords: cDNA ; Cod ; EST ; Genomic ; Godus morhua ; Library ; Ovary ; Reproduction
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 184041 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e22965, doi:10.1371/journal.pone.0022965.
    Description: Historically, cosmopolitan phytoplankton species were presumed to represent largely unstructured populations. However, the recent development of molecular tools to examine genetic diversity have revealed differences in phytoplankton taxa across geographic scales and provided insight into the physiology and ecology of blooms. Here we describe the genetic analysis of an extensive bloom of the toxic dinoflagellate Alexandrium fundyense that occurred in the Gulf of Maine in 2005. This bloom was notable for its intensity and duration, covering hundreds of kilometers and persisting for almost two months. Genotypic analyses based on microsatellite marker data indicate that the open waters of the northeastern U.S. harbor a single regional population of A. fundyense comprising two genetically distinct sub-populations. These subpopulations were characteristic of early- and late-bloom samples and were derived from the northern and southern areas of the bloom, respectively. The temporal changes observed during this study provide clear evidence of succession during a continuous bloom and show that selection can act on the timescale of weeks to significantly alter the representation of genotypes within a population. The effects of selection on population composition and turnover would be magnified if sexual reproduction were likewise influenced by environmental conditions. We hypothesize that the combined effects of differential growth and reproduction rates serves to reduce gene flow between the sub-populations, reinforcing population structure while maintaining the diversity of the overall regional population.
    Description: This work was supported by the National Institute of Environmental Health Sciences (1-P50-ES012742 to DMA and DLE), by the National Science Foundation through the Woods Hole Center for Oceans and Human Health (OCE-0430724), and by the ECOHAB program (NOAA Grant NA06NOS4780245).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...