ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 32 (1994), S. 1573-1577 
    ISSN: 0887-6266
    Keywords: terbium nitrate ; poly(ethylene oxide) ; solubility ; complexation ; x-ray analysis ; thermal analysis ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The Tb (NO3)3-PEO system was characterized to have a solubility limit equivalent to n ≅ 6.5 and a coordination number of 12.4 ± 0.1, compared to 5.0 and 10.9 ± 0.1 for the Nd(NO3)3-PEO system. The greater coordination involving Tb3+ appears to be responsible for the lower asymptotic glass transition temperature at high doping levels of the Tb(NO3)3-PEO complex. In both systems, anhydrous amorphous complexes were obtained below the respective solubility limits, over which apparent solubilities were found to be enhanced by the presence of tightly bound moisture while retaining the amorphous character of the complexes. Whereas partial precipitation was observed in the Tb(NO3)3-PEO system upon exposure to ambient moisture, both complexation and amorphous character were found to persist in the Nd(NO3)3-PEO system in the presence of absorbed moisture. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 32 (1994), S. 1687-1695 
    ISSN: 0887-6266
    Keywords: amorphous PEO ; doped systems ; neodymium compounds ; polymer host ; thermal analysis ; x-ray analysis ; interferometry ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In view of the residual crystallinity in PEO found to limit the solubility of some Nd3+-compounds, amorphous PEO (aPEO) was synthesized for exploration as an alternative host. Complexation, solubility limit, morphology, and response to moisture absorption in the doped systems were investigated using FTIR, DSC, TGA, and WAXD techniques. Representing a perturbation to the structural regularity present in PEO, aPEO was found to present lower solubilities for dopants (Nd(act)3 and Nd(acac)3, both characterized by a weak Nd3+-ether oxygen interaction. On the other hand, no difference in solubility was observed for dopant Nd(NO3)3, characterized by a strong Nd3+-ether oxygen interaction. Laser interferometry was employed to assess film homogeneity of the Nd(NO3)3-doped systems across a 20-mm diameter, and the measured peak-to-valley distortion values were observed to be encouraging for practical applications. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0887-6266
    Keywords: macromolecular complexes ; poly(ethylene oxide) ; rare earth metal compounds ; x-ray analysis ; thermal analysis ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The solubility, complexation, and morphology in the Nd(NO3)3-PEO and Nd(Dpm)3-PEO systems were investigated using the FTIR, DSC, TGA, WAXD, and SAXS techniques. In both systems, dissolution was verified by the absence of features characteristic of the bulk-phase dopants detectable with WAXD and DSC, and complexation was evident from the FTIR spectral shifts involving the stretching motions of the EO unit. The extent of the Nd3+-EO interaction was found to be much stronger with Nd(NO3)3 than Nd(Dpm)3. As a consequence, a Tg elevation from 222K in pure PEO to 335K at an EO/Nd3+ ratio (defined as n) of between 4.0 and 5.6 was observed in the Nd(NO3)3-PEO system. Moreover, completely dry and amorphous complexes were obtained at n ≥ 5.6, while residual moisture accompanying complexes at n ≤ 4 was found to persist upon prolonged vacuum drying. Being intrinsically hygroscopic at all doping levels, the Nd(NO3)3-PEO system was found to absorb moisture from the atmosphere resulting in wet amorphous complexes, although precipitation of Nd(NO3)3)·6H2O was observed at n ≤ 4. It was proposed that moisture present in the Nd(NO3)3-PEO system be classified into two categories. One is tightly bound to Nd3+ to satisfy its coordination requirement, which was determined to be 11. The other is loosely bound, which is capable of being removed by heating and returning upon exposure to the atmosphere. It is the latter that can be readily quantified by the TGA technique and that lowers Tg via plasticization. In addition to the observed minor FTIR spectral shifts, a relatively weak Nd3+-EO interaction in the Nd(Dpm)3-PEO system resulted in a lack of the Tg elevation for PEO, persistence of the crystalline portion of PEO at all doping levels, and the formation of new crystalline phases as revealed by the WAXD patterns and the DSC thermograms. The short-range order in PEO does not appear to be perturbed, but the SAXS data suggest that the long range-order is disrupted by the presence of Nd(Dpm)3 at an extremely low doping level (i.e., n ≥ 60). © 1994 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 31 (1993), S. 647-654 
    ISSN: 0887-6266
    Keywords: poly(ethylene oxide) doped with neodymium acetate, thermal behavior and morphology of ; rare earth metal salt Nd (Act)3 as dopant in PEO ; morphology of neodymium acetate-PEO system ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Samples of poly(ethylene oxide), PEO, doped with neodymium acetate, Nd (Act)3, were prepared and found to be microphase separated. At an EO/Nd (Act)3 molar ratio no less than 4, wide-angle x-ray diffraction (WAXD) patterns and small-angle x-ray scattering (SAXS) data suggest that bulk Nd (Act)3 and ionic clusters are both absent. It is inferred from differential scanning calorimetry (DSC) thermograms that in the presence of PEO, Nd (Act)3 forms an amorphous phase which is different from the amorphous phase formed by Nd (Act)3 alone. The tighter binding of CH3COO- to Nd3+, in comparison to Cl-, appears to be responsible for the lack of true dissolution of Nd (Act)3 in PEO, a behavior clearly distinct from a number of polymer-metal salt complexes reported in the literature. © 1993 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-05-01
    Print ISSN: 0024-9297
    Electronic ISSN: 1520-5835
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-09-23
    Print ISSN: 0897-4756
    Electronic ISSN: 1520-5002
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-11-01
    Print ISSN: 1077-260X
    Electronic ISSN: 1558-4542
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: Microgravity fluid physics experiments frequently measure concentration and temperature. Interferometers such as the Twyman Green illustrated have performed full-field measurement of these quantities. As with most such devices, this interferometer uses a reference path that is not common with the path through the test section. Recombination of the test and reference wavefronts produces interference fringes. Unfortunately, in order to obtain stable fringes, the alignment of both the test and reference paths must be maintained to within a fraction of the wavelength of the light being used for the measurement. Otherwise, the fringes will shift and may disappear. Because these interferometers are extremely sensitive to bumping, jarring and transmitted vibration, they are typically mounted on optical isolation tables. Schlieren deflectometers or the more recent Shack-Hartmann wavefront sensors also measure concentration and temperature in laboratory fluid flows. Ray optics describe the operation of both devices. In a schlieren system, an expanded, collimated beam passes through a test section where refractive index gradients deflect rays. A lens focuses the beam to a filter placed in the rear focal plane of the decollimating lens. In a quantitative color schlieren system, gradients in the index of refraction appear as colors in the field of view due to the action of the color filter. Since sensitivity is a function of the focal length of the decollimating lens, these systems are rather long and filter fabrication and calibration is rather difficult. A Shack-Hartmann wavefront sensor is an array of small lenslets. Typical diameters are on the order of a few hundred microns. Since these lenslets divide the test section into resolution elements, the spatial resolution can be no smaller than an individual lenslet. Such a device was recently used to perform high-speed tomography of heated air exiting a 1.27 cm diameter nozzle. While these wavefront sensors are very compact, the limited spatial resolution and the methods required for data reduction suggest that a more useful instrument needs to be developed. The category of interferometers known as common path interferometers can eliminate much of the vibration sensitivity associated with traditional interferometry as described above. In these devices, division of the amplitude of the wavefront following the test section produces the reference beam. Examples of these instruments include shearing and point diffraction interferometers. In the latter case, shown schematically, a lens focuses light passing through the test section onto a small diffracting object. Such objects are typically either a circle of material on a high quality glass plate or a small sphere in a glass cell. The size of the focused spot is several times larger than the object so that the light not intercepted by the diffracting object forms the test beam while the diffracted light generates a spherical reference beam. While this configuration is mechanically stable, phase shifting one beam with respect to the other is difficult due to the common path. Phase shifting enables extremely accurate measurements of the phase of the interferogram using only gray scale intensity measurements and is the de facto standard of industry. Mercer and Creath 2 demonstrated phase shifting in a point diffraction interferometer using a spherical spacer in a liquid crystal cell as the diffracting object. By changing the voltage across the cell, they were able to shift the phase of the undiffracted beam relative to the reference beam generated by diffraction from the sphere. While they applied this technology to fluid measurements, the device shifted phase so slowly that it was not useful for studying transient phenomena. We have identified several technical problems that precluded operation of the device at video frame rates and intend to solve them to produce a phase-shifting liquid crystal point-diffraction interferometer operating at video frame rates. The first task is to produce high contrast fringes. Since the diffracted beam is much weaker than the transmitted beam, interferograms have poor contrast unless a dye is added to the liquid crystal to reduce the intensity of the undiffracted light. Dyes previously used were not rigorously characterized and suffered from hysteresis in both the initial alignment state of the device and the electro-optic switching characteristics. Hence, our initial effort will identify and characterize dyes that do not suffer from these difficulties and are readily soluble in the liquid crystal host. Since the ultimate goal of this research is to produce interferometers capable of phase shifting at video frame rates, we will quantify the difference in switching times between ferroelectric and nematic liquid crystals. While we have more experience with nematic crystals, they typically switch more slowly than ferroelectric cells. As part of that effort, we will investigate the difference in the modulation of the interferograms as a function of the type of liquid crystal in the cell. Because the temporal switching response of a liquid crystal cell is directly related its thickness, we intend to explore techniques required to produce cells that are as thin as possible. However, the cells must still produce a total phase shift of two pi radians.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference; 1137-1139
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...