ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2014-07-30
    Description: We present the effects of changing two sliding parameters, a deformational velocity parameter and two bedrock deflection parameters on the evolution of the Antarctic ice sheet over the period from the last interglacial until the present. These sensitivity experiments have been conducted by running the dynamic ice model ANICE forward in time. The temporal climatological forcing is established by interpolating between two temporal climate states created with a regional climate model. The interpolation is done in such a way that both temperature and surface mass balance follow the European Project for Ice Coring in Antarctica (EPICA) Dome C ice-core proxy record for temperature. We have determined an optimal set of parameter values, for which a realistic grounding-line retreat history and present-day ice sheet can be simulated; the simulation with this set of parameter values is defined as the reference simulation. An increase of sliding with respect to this reference simulation leads to a decrease of the Antarctic ice volume due to enhanced ice velocities on mainly the West Antarctic ice sheet. The effect of changing the deformational velocity parameter mainly yields a change in east Antarctic ice volume. Furthermore, we have found a minimum in the Antarctic ice volume during the mid-Holocene, in accordance with observations. This is a robust feature in our model results, where the strength and the timing of this minimum are both dependent on the investigated parameters. More sliding and a slower responding bedrock lead to a stronger minimum which emerges at an earlier time. From the model results, we conclude that the Antarctic ice sheet has contributed 10.7 ± 1.3 m of eustatic sea level to the global ocean from the last glacial maximum (about 16 ka for the Antarctic ice sheet) until the present.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-06
    Description: We present the effects of changing two sliding parameters, a deformational velocity parameter and two bedrock deflection parameters on the evolution of the Antarctic Ice Sheet over the period from the last interglacial until the present. These sensitivity experiments have been conducted by running the ice-dynamical model ANICE forward in time. The climatological forcing over time is established by interpolating between two climate states from a regional climate model over time. The interpolation is done in such a way that both temperature and surface mass balance follow the Epica Dome C ice-core proxy record for temperature. We have determined an optimal set of parameter values, for which a realistic grounding line retreat history and present-day ice sheet can be simulated, the simulation with this set of parameter values is defined as the reference simulation. An increase of sliding with respect to this reference simulation leads to a decrease of the Antarctic ice volume due to enhanced ice velocities on mainly the West Antarctic Ice Sheet. The effect of changing the deformational velocity parameter mainly yields a change in East-Antarctic ice volume. Furthermore, we have found a minimum in the Antarctic ice volume during the mid-Holocene. This is a robust feature in our model results, where the strength and the timing of this minimum are both dependent on the investigated parameters. More sliding and a slower responding bedrock lead to a stronger minimum which emerges at an earlier time. From the model results we conclude that the Antarctic Ice Sheet has contributed 10.7 ± 1.3 m of eustatic sea level to the global ocean from the Last Glacial Maximum (about 16 kyr ago for the Antarctic Ice Sheet) until the present.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-18
    Description: Eighteen General Circulation Models (GCMs) are compared to reference data for the present, the Mid-Holocene (MH) and the Last Glacial Maximum (LGM) for the Antarctic region. The climatology produced by a regional climate model is taken as a reference climate for the present. GCM results for the past are compared to ice-core data. The goal of this study is to find the best GCM that can be used to drive an ice sheet model that simulates the evolution of the Antarctic Ice Sheet. Because temperature and precipitation are the most important climate variables when modelling the evolution of an ice sheet, these two variables are considered in this paper. This is done by ranking the models according to how well their output corresponds with the references. In general, present-day temperature is simulated well, but precipitation is overestimated compared to the reference data. Another finding is that model biases play an important role in simulating the past, as they are often larger than the change in temperature or precipitation between the past and the present. Considering the results for the present-day as well as for the MH and the LGM, the best performing models are HadCM3 and MIROC 3.2.2.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-10-24
    Description: Eighteen global climate models (GCMs) are compared to reference data for the present, the mid-Holocene (MH) and the last glacial maximum (LGM) for the Antarctic region. For the present, the reference data come from a regional climate model. GCM results for the past are compared to ice core data. The goal of this study is to find the best GCM to model the evolution of the Antarctic Ice Sheet. Because temperature and precipitation are the most important climate variables when modelling the evolution of an ice sheet, these two variables are considered in this paper. In general, present-day temperature is simulated well, but precipitation is overestimated compared to the reference state. Some other findings are that the air above ice shelves is too warm and precipitation in the coastal region of the western peninsula is underestimated by the models, as compared to the present-day reference state. Furthermore, model biases play an important role in simulating the past, as they are often larger than the change in temperature or precipitation between the past and the present. Considering the results for the present-day as well as for the MH and the LGM, the best performing models are HadCM3 and MIROC 3.2.2.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-13
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...