ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The force-feel system characteristics of the cyclic inceptors of most helicopters are set based on the characteristics of the mechanical components in the control system (mass, springs, friction dampers, etc.). For these helicopters, the force-feel characteristics typically remain constant over the entire flight envelope, with perhaps a trim release to minimize control forces while maneuvering. With the advent of fly-by-wire control systems and active inceptors in helicopters, the force-feel characteristics are now determined by the closed-loop response of the active inceptor itself as defined by the inertia, force/displacement gradient, damping, breakout force and detent shape configuration parameters in the inceptor control laws. These systems give the flexibility to dynamically prescribe different feel characteristics for different control modes or flight conditions, and the ability to provide tactile cueing to the pilot through the actively controlled side-stick or center-stick cyclic inceptor. For rotorcraft, a few studies have been conducted to assess the effects of cyclic force-feel characteristics on handling qualities in flight. An early study provided valuable insight into the static force-deflection characteristics (force gradient) and the number of axes controlled by the side-stick controller for the U.S. Army's Advanced Digital/Optical Control System (ADOCS) demonstrator aircraft [1]. The first of a series of studies providing insight on the inceptor dynamic force-feel characteristics was conducted on the NASA/Army CH-47B variable-stability helicopter [2]. This work led to a proposed requirement that set boundaries based on the cyclic natural frequency and inertia, with the stipulation of a lower damping ratio limit of 0.3 [3]. A second study was conducted by the Canadian Institute for Aerospace Research using their variable-stability Bell 205A helicopter [4]. This research suggested boundaries for stick dynamics based on natural frequency and damping ratio. While these two studies produced boundaries for acceptable/unacceptable stick dynamics for rotorcraft, they were not able to provide guidance on how variations of the stick dynamics in the acceptable region impact handling qualities. More recently, a ground based simulation study [5] suggested little benefit was to be obtained from variations of the damping ratio for a side-stick controller exhibiting high natural frequencies (greater than 17 rad/s) and damping ratios (greater than 2.0). A flight test campaign was conducted concurrently on the RASCAL JUH-60A in-flight simulator and the ACT/FHS EC-135 in flight simulator [6]. Upon detailed analysis of the pilot evaluations the study identified a clear preference for a high damping ratio and natural frequency of the center stick inceptors. Side stick controllers were found to be less sensitive to the damping. While these studies have compiled a substantial amount of data, in the form of qualitative and quantitative pilot opinion, a fundamental analysis of the effect of the inceptor force-feel system on flight control is found to be lacking. The study of Ref. [6] specifically concluded that a systematic analysis was necessary, since discrepancies with the assigned handling qualities showed that proposed analytical design metrics, or criteria, were not suitable. The overall goal of the present study is to develop a clearer fundamental understanding of the underlying mechanisms associated with the inceptor dynamics that govern the handling qualities using a manageable analytical methodology.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN6233 , 69th American Helicopter Society Annual Forum; May 21, 2013 - May 23, 2013; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A Translational Rate Command (TRC) control law has been developed to enable low speed maneuvering of a large civil tiltrotor with minimal pitch changes by means of automatic nacelle angle deflections for longitudinal velocity control. The nacelle actuator bandwidth required to achieve Level 1 handling qualities in hover and the feasibility of additional longitudinal cyclic control to augment low bandwidth nacelle actuation were investigated. A frequency-domain handling qualities criterion characterizing TRC response in terms of bandwidth and phase delay was proposed and validated against a piloted simulation conducted on the NASA-Ames Vertical Motion Simulator. Seven experimental test pilots completed evaluations in the ADS-33E-PRF Hover Mission Task Element (MTE) for a matrix of nacelle actuator bandwidths, equivalent rise times and control response sensitivities, and longitudinal cyclic control allocations. Evaluated against this task, longitudinal phase delay shows the Level 1 boundary is around 0.4 0.5 s. Accordingly, Level 1 handling qualities were achieved either with a nacelle actuator bandwidth greater than 4 rad/s, or by employing longitudinal cyclic control to augment low bandwidth nacelle actuation.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN5044 , American Helicopter Society 68th Annual Forum; May 01, 2012 - May 03, 2012; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The effect of inceptor feel-system characteristics on piloted handling qualities has been a research topic of interest for many years. Most of the research efforts have focused on advanced fly-by-wire fixed-wing aircraft with only a few studies investigating the effects on rotorcraft. Consequently, only limited guidance is available on how cyclic force-feel characteristics should be set to obtain optimal handling qualities for rotorcraft. To study this effect, the U.S. Army Aeroflightdynamics Directorate working with the DLR Institute of Flight Systems in Germany under Task X of the U.S. German Memorandum of Understanding have been conducting flight test evaluations. In the U.S., five experimental test pilots have completed evaluations of two Mission Task Elements (MTEs) from ADS-33E-PRF and two command/response types for a matrix of center-stick cyclic force-feel characteristics at Moffett Field. In Germany, three experimental test Pilots have conducted initial evaluations of the two MTEs with two command/response types for a parallel matrix of side-stick cyclic force-feel characteristics at WTD-61 in Manching. The resulting data set is used to correlate the effect of changes in natural frequency and damping ratio of the cyclic inceptor on the piloted handling qualities. Existing criteria in ADS-33E and a proposed Handling Qualities Sensitivity Function that includes the effects of the cyclic force-feel characteristics are also evaluated against the data set and discussed.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN5043 , American Helicopter Society 68th Annual Forum; May 01, 2012; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A piloted simulation experiment conducted on the NASA-Ames Vertical Motion Simulator evaluated the hover and low speed handling qualities of a large tilt-rotor concept, with particular emphasis on longitudinal and lateral position control. Ten experimental test pilots evaluated different combinations of Attitude Command-Attitude Hold (ACAH) and Translational Rate Command (TRC) response types, nacelle conversion actuator authority limits and inceptor choices. Pilots performed evaluations in revised versions of the ADS-33 Hover, Lateral Reposition and Depart/Abort MTEs and moderate turbulence conditions. Level 2 handling qualities ratings were primarily recorded using ACAH response type in all three of the evaluation maneuvers. The baseline TRC conferred Level 1 handling qualities in the Hover MTE, but there was a tendency to enter into a PIO associated with nacelle actuator rate limiting when employing large, aggressive control inputs. Interestingly, increasing rate limits also led to a reduction in the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired, pitching motions proportional to the allowable amount of nacelle rate. A modification that counteracted this effect significantly improved the handling qualities. Evaluation of the different response type variants showed that inclusion of TRC response could provide Level 1 handling qualities in the Lateral Reposition maneuver by reducing coupled pitch and heave off axis responses that otherwise manifest with ACAH. Finally, evaluations in the Depart/Abort maneuver showed that uncertainty about commanded nacelle position and ensuing aircraft response, when manually controlling the nacelle, demanded high levels of attention from the pilot. Additional requirements to maintain pitch attitude within 5 deg compounded the necessary workload.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN3346 , American Helicopter Society 67th Annual Forum; May 03, 2011 - May 05, 2011; Virginia Beach, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: An in-depth analysis of a Large Civil Tiltrotor simulation with a Translational Rate Command control law that uses automatic nacelle deflections for longitudinal velocity control and lateral cyclic for lateral velocity control is presented. Results from piloted real-time simulation experiments and offline time and frequency domain analyses are used to investigate the fundamental flight dynamic and control mechanisms of the control law. The baseline Translational Rate Command conferred handling qualities improvements over an attitude command attitude hold control law but in some scenarios there was a tendency to enter PIO. Nacelle actuator rate limiting strongly influenced the PIO tendency and reducing the rate limits degraded the handling qualities further. Counterintuitively, increasing rate limits also led to a worsening of the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired pitching motions proportional to the allowable amount of nacelle rate. A modification that applied a counteracting amount of longitudinal cyclic proportional to the nacelle rate significantly improved the handling qualities. The lateral axis of the Translational Rate Command conferred Level 1 handling qualities in a Lateral Reposition maneuver. Analysis of the influence of the modeling fidelity on the lateral flapping angles is presented. It is showed that the linear modeling approximation is likely to have under-predicted the side-force and therefore under-predicted the lateral flapping at velocities above 15 ft/s. However, at lower velocities, and therefore more weakly influenced by the side force modeling, the accelerations that the control law commands also significantly influenced the peak levels of lateral flapping achieved.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN3298 , AHS 67th Annual Forum and Technology Display; May 03, 2011 - May 05, 2011; Virginia Beach, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: In recent years, NASA has invested in key activities in the areas of flight controls, handling qualities and operations of rotorcraft for civilian applications. More specifically, the flight dynamics and control discipline has focused on analyzing the unique flight control and handling qualities challenges of large rotary wing vehicles anticipated for future passenger service, and examining the effect of control system augmentation on handling qualities for current civilian helicopters in order to improve safety and reduce accident rates. This paper highlights two recent research efforts in these areas. The first is an examination of flight control and handling qualities aspects of large rotorcraft. A series of experiments were performed in the large-motion Vertical Motion Simulator at NASA Ames Research Center to quantify the effects of vehicle size on flight control requirements and piloted handling qualities. These experiments used a large tilt-rotor concept (~100 passengers) to also investigate the control augmentation required to obtain Level 1 handling qualities for a vehicle of this size. The second is an examination of the effect of control system augmentation on handling qualities for current civil rotorcraft, like those currently used for Emergency Medical Service type operations. Many current civilian helicopters have rate response type control systems and little or no control system augmentation, although current technologies allow helicopters to be fitted with stability augmentation systems, either as standard equipment or aftermarket options. A simulation experiment was conducted in the Vertical Motion Simulator to quantify the effects of advanced control modes available with a partial authority stability augmentation system on task performance and handling qualities in both good and degraded visual conditions. In addition to providing an overview of the rotary wing flight dynamics and controls research at NASA, this paper will provide an overview of these two research activities along with key results and conclusions.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN15760 , Australian Pacific Vertiflite Conference on Helicopter Technology and Asian-Australian Rotorcraft Forum (ARF); Dec 18, 2014 - Dec 19, 2014; Melbourne; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: In June 2013, NASA and the U.S. Army jointly conducted a simulation experiment in the NASA-Ames Vertical Motion Simulator that examined and quantified the effects of limited-authority control system augmentation on handling qualities and task performance in both good and degraded visual environments (DVEs). The vehicle model used for the experiment was the OH-58D with similar size, weight and performance, and the same 4-blade rotor system as the Bell 407 civilian helicopter that is commonly used for medical evacuation and emergency medical services. The control systems investigated as part of this study included the baseline aircraft Rate Command system, a short-term Attitude Command/Attitude Hold system that uses lagged-rate feedback to provide a short-term attitude response, Modernized Control Laws that provide an Attitude Command/Attitude Hold control response type, and Modernized Control Laws with an additional Position Hold function. Evaluation tasks included the ADS-33 Hover, Sidestep, Acceleration/Deceleration, and Pirouette Mission Task Elements, as well as a new proposed Emergency Medical Services task that includes an approach and landing at a minimally prepared remote landing site. Degraded visual environments were simulated with night vision goggles and an unaided night scene. A total of nine experimental test pilots participated in the four-week simulation experiment. Data recorded during the evaluation included Cooper-Harper handling qualities ratings, Bedford Workload scale ratings, and task performance. The Usable Cue Environment (UCE) was measured for this simulation experiment, and found to be UCE equals 1 in good visual environments and UCE equals 2 in degraded visual environments with night vision goggles. Results showed that handling qualities ratings were improved with a control system providing short-term attitude response over a rate command system, although the improvements were not sufficient to produce Level 1 handling qualities in degraded visual environments. Results for an Attitude Command/Attitude Hold control system showed that borderline Level 1 handling qualities could be achieved in degraded visual environments, and the 10 percent authority stability augmentation system was adequate to obtain these handling qualities ratings.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN13978 , AHS Log No. 1052 , AHS (American Helicopter Society) Annual Forum and Technology Display (Forum 70); May 20, 2014 - May 22, 2014; Montreal, QC; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: An acoustics parametric analysis of the effect of fuselage drag and pitching moment on the Blade-Vortex Interaction (BVI) noise radiated by a medium lift helicopter (S-70UH-60) in a descending flight condition was conducted. The comprehensive analysis CAMRAD II was used for the calculation of vehicle trim, wake geometry and integrated air loads on the blade. The acoustics prediction code PSU-WOPWOP was used for calculating acoustic pressure signatures for a hemispherical grid centered at the hub. This paper revisits the concept of the X-force controller for BVI noise reduction, and investigates its effectiveness on an S-70 helicopter. The analysis showed that further BVI noise reductions were achievable by controlling the fuselage pitching moment. Reductions in excess of 6 dB of the peak BVI noise radiated towards the ground were demonstrated by compounding the effect of airframe drag and pitching moment simultaneously.
    Keywords: Acoustics; Aeronautics (General)
    Type: ARC-E-DAA-TN28912 , American Helicopter Society (AHS) Technical Meeting on Aeromechanics Design for Vertical Lift; Jan 20, 2016 - Jan 22, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-27
    Description: In recent years, NASA has invested in key activities in the areas of flight controls, handling qualities and operations of rotorcraft for civilian applications. More specifically, the flight dynamics and control discipline has focused on analyzing the unique flight control and handling qualities challenges of large rotary wing vehicles anticipated for future passenger service, and examining the effect of control system augmentation on handling qualities for current civilian helicopters in order to improve safety and reduce accident rates. This paper highlights two recent research efforts in these areas. The first is an examination of flight control and handling qualities aspects of large rotorcraft. A series of experiments were performed in the large-motion Vertical Motion Simulator at NASA Ames Research Center to quantify the effects of vehicle size on flight control requirements and piloted handling qualities. These experiments used a large tilt-rotor concept (~100 passengers) to also investigate the control augmentation required to obtain Level 1 handling qualities for a vehicle of this size. The second is an examination of the effect of control system augmentation on handling qualities for current civil rotorcraft, like those currently used for Emergency Medical Service type operations. Many current civilian helicopters have rate response type control systems and little or no control system augmentation, although current technologies allow helicopters to be fitted with stability augmentation systems, either as standard equipment or aftermarket options. A simulation experiment was conducted in the Vertical Motion Simulator to quantify the effects of advanced control modes available with a partial authority stability augmentation system on task performance and handling qualities in both good and degraded visual conditions. In addition to providing an overview of the rotary wing flight dynamics and controls research at NASA, this paper will provide an overview of these two research activities along with key results and conclusions.
    Keywords: Research and Support Facilities (Air); Aircraft Stability and Control
    Type: ARC-E-DAA-TN17816 , Australian Pacific Vertiflite Conference on Helicopter Technology; Dec 18, 2014 - Dec 19, 2014; Melbourne; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: According to a number of system studies, large capacity advanced rotorcraft with a capability of high cruise speeds (approx.350 mph) as well as vertical and/or short take-off and landing (V/STOL) flight could alleviate anticipated air transportation capacity issues by making use of non-primary runways, taxiways, and aprons. These advanced aircraft pose a number of design challenges, as well as unknown issues in the flight control and handling qualities domains. A series of piloted simulation experiments have been conducted on the NASA Ames Research Center Vertical Motion Simulator (VMS) in recent years to systematically investigate the fundamental flight control and handling qualities issues associated with the characteristics of large rotorcraft, including tiltrotors, in hover and low-speed maneuvering.
    Keywords: Aeronautics (General)
    Type: NASA/TP-2015-216656 , ARC-E-DAA-TN13429
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...