ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 26 (1993), S. 401-403 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 28 (1995), S. 1661-1667 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 67 (1996), S. 2030-2031 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A new high-pressure optical hot-stage system combined with polarizing optical microscope has been constructed for in situ observation of optical texture of liquid crystals as well as polymers during the mode of either temperature or pressure scanning. It operated well in a temperature region between room temperature and 250 °C under hydrostatic pressures up to 300 MPa. The texture of a pressure-induced crystal polymorph of a dimesogenic liquid crystal was successfully observed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 24 (1989), S. 2245-2249 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Polyoxymethylene (POM) needle-like crystals, whiskers, are known as trigonal crystals of very high perfection and are thought to have a high Young's modulus. In this study, composite films of the whisker were prepared as one possible method to utilize the whiskers as a new, high performance material. POM resin, i.e. a substance with the same chemical structure as the whisker, was selected as a matrix, having good adhesion with the filler (whisker). The whiskers were mixed with POM resin powder, prior to hot-pressing and made into the composite films, taking advantage of the difference of the melting points. The whisker content of the resulted film reached up to 70%. The Young's modulus of the composite film was increased up to about 14 GPa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 32 (1986), S. 4423-4437 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effect of pressure on miscibility and phase separation in blends of random copolymers of ortho- and para-fluorostyrene, P(o-FS-co-p-FS) and poly(2,6-dimethyl-1,4-phenylene oxide), PPO, has been studied by differential thermal analysis (DTA) at pressures up to 300 MPa. At 200 MPa the copolymers containing from 10 to 38 mol% p-FS are miscible with PPO below 230°C using the customary criterion of a single calorimetric glass transition temperature (Tg). Each blend undergoes phase separation upon annealing at higher temperatures at both atmospheric and elevated pressures indicating the presence of a lower critical solution temperature (LCST). When the phase behaviors of the 50/50 wt% blends are examined as a function of temperature and copolymer composition, a symmetric miscibility “window” can be observed in the resulting temperature-composition diagram with a maximum at about 22 mol% p-FS. In a complementary set of experiments, the pressure dependence of the phase boundary for the blend of PPO and P(o-FS-co-p-FS) in which the copolymer contained 29 mol% p-FS was studied. The temperature minimum of the phase boundary is at about 50 wt% PPO and is independent of pressure. The consolute temperature, Tc, increases at about 0.10°C/MPa up to 200 MPa and then becomes independent of pressure to reach an asymptotic value at around 270°C. Similar behavior is also observed for blends in which the copolymer composition contains either 16 or 23 mol% p-FS. In these blends the decrease of dTc/dP at higher pressures may indicate that the negative volume of mixing approaches zero above 200 MPa. This study shows therefore, that pressure no longer plays a role in increasing the miscibility above 200 MPa.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 13 (1975), S. 637-651 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effect of pressure on the melting point and volume of fusion of polyethylene was studied by high-pressure dilatometry. Starting materials were crystallized slowly from the melt under pressures of 1500, 3500, 5130 kg/cm2, and 1 atm. It has been shown that the unusual behavior observed at pressures above 4000 kg/cm2 is due to crystallization and melting of two kinds of extended-chain crystals differing in thermal stability. These are designated as ordinary extended-chain and highly extended-chain crystals, respectively. The relation between pressure P and melting temperature Tm of folded-chain, ordinary extended-chain, and highly extended-chain polyethylene was determined precisely. At pressures up to about 3000 kg/cm2, plots of P against Tm for the crystal forms have almost the same curvature and then become parallel. But at pressures above 4000 kg/cm2, ordinary extended-chain crystals show a linear increase of Tm with a constant slope of about 70 atm/deg. Curve for the highly extended-chain crystals changes in slope from 70 to 50 atm/deg at pressures between 3500 and 4300 kg/cm2, and then show a sharp increase of Tm with increasing pressure. Experiments show that the meltingpoint curve of the highly extended-chain crystals overlaps that of the ordinary extended-chain crystals at pressures below 4000 kg/cm2. Annealing experiments with folded-chain and ordinary extended-chain crystals have been made under high pressure. It is suggested that the formation of highly extended-chain crystals occurs stepwise through the formation and reorganization of ordinary extended-chain crystals from the original folded-chain crystals by a mechanism of partial melting and recrystallization at pressures above 4000 kg/cm2.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 19 (1981), S. 1313-1324 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A position-sensitive proportional counter (PSPC) x-ray measuring system is employed to observe directly phase transition processes of polyethylene at high temperature and high pressure. X-ray diffraction measurements reveal important new experimental data. First, an irreversible crystal transition from the hexagonal to the orthorhombic structures occurs in the critical region where the hexagonal structure begins to appear at a pressure of 350 MPa. That is, the (100) hexagonal reflection is observed only on cooling at 350 MPa. At pressures above about 400 MPa, however, the hexagonal phase is stable and the phase transitions melt ↔ hexagonal ↔ orthorhombic occur reversibly. Second, during cooling at pressures above 400 MPa, the (100) hexagonal reflection can be observed at temperatures below the hexagonal ↔ orthorhombic transition temperature. This behavior suggests that all the crystal morphologies of polyethylene, from “highly-extended-chain” crystals to crystals with a low melting point, are formed by the transitions melt → hexagonal → orthorhombic. Third, in heating at elevated pressures above 500 MPa, a shoulder in the peak intensity versus temperature plot for the (100) hexagonal reflection is observed at a higher temperature than the large maximum which occurs immediately after the crystal transition. This behavior indicates melting in two stages of hexagonal structures with different thermal stabilities, and the shoulder at higher temperature may be due to the fusion of the hexagonal phase annealed either below or above the transition point.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 19 (1981), S. 1325-1331 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The relation between the thermal behavior of extended-chain crystals (ECCs) of polyethylene and the phase transitions, i.e., orthorhombic ↔ hexagonal ↔ melt, of polyethylene at high pressures above about 400 MPa has been studied by high-pressure differential thermal analysis (DTA), and with a high-pressure and high-temperature x-ray diffraction apparatus equipped with a position-sensitive proportional counter measuring system. The original sample used in this study consists mainly of two kinds of ECC, which we designate as “ordinary extended-chain” crystals (OECCs) and “highly-extended-chain” crystals (HECCs). Experimental results at pressures below 300 MPa substantiate the results previously reported: i.e., the phase diagram indicating the relation between the melting temperatures and pressure for the OECCs and HECCs can be determined for pressures up to 500 MPa.In heating at pressures above about 500 MPa, the peak intensity of the (100) reflection of the hexagonal structure decreases in two stages with increasing temperature. The phenomenon corresponds to the thermal behavior determined by high-pressure DTA in which two small endothermic peaks can be observed at temperatures above that of the crystal transition evidenced by the strong peak. This phenomenon suggests melting in two stages of hexagonal structures with different thermal stabilities, and that the change at higher temperature may be due to fusion of the hexagonal phase annealed either below or above the transition temperature.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 12 (1974), S. 2551-2565 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Crystallization and melting behavior of linear polyethylene under high pressures up to 6000 kg/cm2 has been investigated with a high-pressure dilatometer. Crystallization was carried out at a cooling rate of 1°C/min from the melt at each pressure. The samples were characterized by differential scanning calorimetry, density, and electron microscopy. Folded-chain crystals are formed in the low-pressure region below 2000 kg/cm2. Crystallization in the intermediate-pressure region between 2000 and 3500 kg/cm2 gives a mixture of folded-chain and extended-chain crystals. The extendedchain crystals are the more stable and predominate at increasing pressure. At high pressures above 4700 kg/cm2, two stages of crystallization and of melting can be observed. The phenomenon suggests that the two kinds of extended-chain crystals with different thermal stability, i.e., the ordinary extended-chain crystals and “highly extended-chain” crystals form through individual crystallization processes from the melt at high pressure.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...