ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 318 (1985), S. 487-487 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] IN their reinterpretation of the transition recorded in the Steens Mountain lavas1, Valet et al2 suggest that the second phase (the 'rebound') occurred at a significantly later time than the first phase (the reverse-to-normal transition). In this way they attempt to separate what is one phenomenon ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-28
    Description: Paleomagnetic study of cores from six deep wells provides an independent temporal framework for much of the alluvial stratigraphy of the Quaternary basin beneath the Santa Clara Valley. This stratigraphy consists of 8 upward-fining cycles in the upper 300 m of section and an underlying 150 m or more of largely fine-grained sediment. The eight cycles have been correlated with the marine oxygen isotope record, thus providing one means of dating the section. The section has also proved to contain a rich paleomagnetic record despite the intermittent sedimentation characteristic of alluvial environments. Each well was designed to reach a depth of ~300 m, although 2 were terminated at shallower depth where bedrock was encountered and one (GUAD) was deepened to bedrock at 407.2 m. Cores were taken at intermittent intervals in most of the wells, composing ~20%–25% of their depths. In GUAD an attempt was made to core the entire upper 300 m, with core recovery of 201.8 m (67%). The paleomagnetic framework ranges from the 32 ka Mono Lake excursion near the top of the second sedimentary cycle to below the 780 ka Brunhes-Matuyama geomagnetic reversal beneath the eighth cycle. These ages nicely fit those assigned to the section based on correlation with the marine oxygen isotope record. Several episodes of anomalous magnetic inclinations were also found within the cyclic section in some of the wells. Some of the episodes of anomalous magnetic inclinations are only separated by short normal intervals in a pattern similar to that described for some well-documented excursions. We consider that a geomagnetic excursion was likely only if the anomalous inclinations were found at approximately the same stratigraphic position in more than one drill hole. A deeper time constraint is provided by the upper boundary (990 ka) of the Jaramillo Normal Polarity Subchron recognized at a depth of 302 m in one deeply penetrating well (GUAD). Approximately 100 m of normal Jaramillo section is evident below that in wells GUAD and EVGR. The reversal that we identify as the 780 ka Brunhes-Matuyama boundary, found at depths of 291–303 m in three wells, indicates an average rate of deposition in this upper section of ~37 cm/k.y. In GUAD, the top of the underlying normally polarized section, which we assign to the upper part of the Jaramillo Normal Polarity Subchron, was found between 301.8 and 304.5 m. The resultant 10 m of reversed polarity section above the Jaramillo seems anomalously short for this 210 k.y. part of the Matuyama Chron, during which several times that thickness of section probably should have accumulated. This observation indicates that a significant unconformity should be present in that short section between the Jaramillo Subchron and the Brunhes-Matuyama boundary. Deeper cores in two wells (GUAD and EVGR) all have normal polarity and seem to represent much of the Jaramillo Subchron, although no base for that subchron was found. The resultant minimum rate of sedimentation for this lower section beneath the unconformity is 170 cm/k.y. The Mono Lake (ca. 32 ka), Pringle Falls (ca. 210 ka), and Big Lost (ca. 565 ka) geomagnetic excursions all seem to be represented in the Santa Clara Valley wells. Possible correlations to the Laschamp (ca. 40 ka) and Blake (ca. 110 ka) excursions are also noted. Three additional excursions that have apparently not been previously reported from western North America occur within cycle 6 (between 536 and 433 ka), near the base of cycle 5 (after 433 ka), and near the middle of cycle 2 (before ca. 75 ka).
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-01
    Description: The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ~100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras fault to the Hayward fault across the Mission seismic trend northeast of the Evergreen basin, whereas slip above a depth of 5 km is transferred through a complex zone of oblique-reverse faults along and over the northeast basin margin. However, a prominent groundwater flow barrier and related land-subsidence discontinuity coincident with the concealed Silver Creek fault, a discontinuity in the pattern of seismicity on the Calaveras fault at the Silver Creek fault intersection, and a structural sag indicative of a negative flower structure in Quaternary sediments along the southwest basin margin indicate that the Silver Creek fault has had minor ongoing slip over the past few hundred thousand years. Two earthquakes with ~M6 occurred in A.D. 1903 in the vicinity of the Silver Creek fault, but the available information is not sufficient to reliably identify them as Silver Creek fault events.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1977-07-10
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-08-10
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1978-01-01
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1985-12-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...