ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-30
    Description: Oceanic lithosphere exposed at the sea floor undergoes seawater-rock alteration reactions involving the oxidation and hydration of glassy basalt. Basalt alteration reactions are theoretically capable of supplying sufficient energy for chemolithoautotrophic growth. Such reactions have been shown to generate microbial biomass in the laboratory, but field-based support for the existence of microbes that are supported by basalt alteration is lacking. Here, using quantitative polymerase chain reaction, in situ hybridization and microscopy, we demonstrate that prokaryotic cell abundances on seafloor-exposed basalts are 3-4 orders of magnitude greater than in overlying deep sea water. Phylogenetic analyses of basaltic lavas from the East Pacific Rise (9 degrees N) and around Hawaii reveal that the basalt-hosted biosphere harbours high bacterial community richness and that community membership is shared between these sites. We hypothesize that alteration reactions fuel chemolithoautotrophic microorganisms, which constitute a trophic base of the basalt habitat, with important implications for deep-sea carbon cycling and chemical exchange between basalt and sea water.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santelli, Cara M -- Orcutt, Beth N -- Banning, Erin -- Bach, Wolfgang -- Moyer, Craig L -- Sogin, Mitchell L -- Staudigel, Hubert -- Edwards, Katrina J -- England -- Nature. 2008 May 29;453(7195):653-6. doi: 10.1038/nature06899.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MIT/WHOI Joint Program in Oceanography and Ocean Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18509444" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Chemoautotrophic Growth ; Genes, Bacterial/genetics ; Geologic Sediments/*microbiology ; Hawaii ; History, Ancient ; *Marine Biology ; Molecular Sequence Data ; Pacific Ocean ; Phylogeny ; Polymerase Chain Reaction ; RNA, Ribosomal, 16S/genetics ; Seawater/microbiology ; *Silicates/metabolism ; Water Microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-12-02
    Description: The human distal gut harbours a vast ensemble of microbes (the microbiota) that provide important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides. Studies of a few unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is used and stored. Here we characterize the faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers, to address how host genotype, environmental exposure and host adiposity influence the gut microbiome. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person's gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable 'core microbiome' at the gene, rather than at the organismal lineage, level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiological states (obese compared with lean).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677729/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677729/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turnbaugh, Peter J -- Hamady, Micah -- Yatsunenko, Tanya -- Cantarel, Brandi L -- Duncan, Alexis -- Ley, Ruth E -- Sogin, Mitchell L -- Jones, William J -- Roe, Bruce A -- Affourtit, Jason P -- Egholm, Michael -- Henrissat, Bernard -- Heath, Andrew C -- Knight, Rob -- Gordon, Jeffrey I -- AA09022/AA/NIAAA NIH HHS/ -- DK78669/DK/NIDDK NIH HHS/ -- ES012742/ES/NIEHS NIH HHS/ -- HD049024/HD/NICHD NIH HHS/ -- P01 DK078669/DK/NIDDK NIH HHS/ -- P01 DK078669-01/DK/NIDDK NIH HHS/ -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-07/DK/NIDDK NIH HHS/ -- P30 DK056341-08/DK/NIDDK NIH HHS/ -- P50 ES012742/ES/NIEHS NIH HHS/ -- P50 ES012742-049001/ES/NIEHS NIH HHS/ -- R01 AA009022/AA/NIAAA NIH HHS/ -- R01 AA009022-10/AA/NIAAA NIH HHS/ -- R01 HD049024/HD/NICHD NIH HHS/ -- R01 HD049024-01/HD/NICHD NIH HHS/ -- T32 GM065103/GM/NIGMS NIH HHS/ -- T32 GM065103-07/GM/NIGMS NIH HHS/ -- UL1 TR000448/TR/NCATS NIH HHS/ -- England -- Nature. 2009 Jan 22;457(7228):480-4. doi: 10.1038/nature07540. Epub 2008 Nov 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences, Washington University School of Medicine, St Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19043404" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Africa/ethnology ; Biodiversity ; Environment ; Europe/ethnology ; Feces/microbiology ; Female ; Gastrointestinal Tract/*microbiology ; Genotype ; Humans ; Metagenome/genetics/*physiology ; Missouri ; Molecular Sequence Data ; Mothers ; Obesity/*microbiology ; RNA, Ribosomal, 16S/analysis/genetics ; Thinness/*microbiology ; Twins, Dizygotic ; Twins, Monozygotic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1989-01-06
    Description: An analysis of the small subunit ribosomal RNA (16S-like rRNA) from the protozoan Giardia lamblia provided a new perspective on the evolution of nucleated cells. Evolutionary distances estimated from sequence comparisons between the 16S-like rRNAs of Giardia lamblia and other eukaryotes exceed similar estimates of evolutionary diversity between archaebacteria and eubacteria and challenge the phylogenetic significance of multiple eukaryotic kingdoms. The Giardia lamblia 16S-like rRNA has retained many of the features that may have been present in the common ancestor of eukaryotes and prokaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sogin, M L -- Gunderson, J H -- Elwood, H J -- Alonso, R A -- Peattie, D A -- New York, N.Y. -- Science. 1989 Jan 6;243(4887):75-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Jewish Center for Immunology and Respiratory Medicine, Department of Pediatrics, Denver, CO 80206.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2911720" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Giardia/*genetics ; Humans ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Phylogeny ; RNA, Ribosomal/*genetics ; RNA, Ribosomal, 16S/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-10-06
    Description: The analytical power of environmental DNA sequences for modeling microbial ecosystems depends on accurate assessments of population structure, including diversity (richness) and relative abundance (evenness). We investigated both aspects of population structure for microbial communities at two neighboring hydrothermal vents by examining the sequences of more than 900,000 microbial small-subunit ribosomal RNA amplicons. The two vent communities have different population structures that reflect local geochemical regimes. Descriptions of archaeal diversity were nearly exhaustive, but despite collecting an unparalleled number of sequences, statistical analyses indicated additional bacterial diversity at every taxonomic level. We predict that hundreds of thousands of sequences will be necessary to capture the vast diversity of microbial communities, and that different patterns of evenness for both high- and low-abundance taxa may be important in defining microbial ecosystem dynamics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Julie A -- Mark Welch, David B -- Morrison, Hilary G -- Huse, Susan M -- Neal, Phillip R -- Butterfield, David A -- Sogin, Mitchell L -- New York, N.Y. -- Science. 2007 Oct 5;318(5847):97-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Josephine Bay Paul Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA. jhuber@mbl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916733" target="_blank"〉PubMed〈/a〉
    Keywords: *Archaea/classification/genetics ; *Bacteria/classification/genetics ; *Biodiversity ; DNA, Archaeal/analysis ; DNA, Bacterial/analysis ; DNA, Ribosomal/analysis ; *Ecosystem ; Epsilonproteobacteria/classification/genetics ; Geologic Sediments/microbiology ; Pacific Ocean ; Polymerase Chain Reaction ; RNA, Ribosomal ; Seawater/*microbiology ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1994-12-09
    Description: Complete 16S-like ribosomal RNA coding regions were obtained from the fungal symbiont of five genera of attine (leaf-cutting) ants and two free-living fungi. Phylogenetic analyses with distance matrix, maximum likelihood, and parsimony methods revealed that the attine fungal symbionts are homobasidiomycetes in the order Agaricales. Comparison of the topology of the attine fungal symbiont phylogenetic tree with a tree based on attine ant morphology revealed a congruent branching pattern of the more derived attine ants and their fungal symbionts. The parallel branching pattern suggests a long-term coevolution of derived leaf-cutting attine ants and their fungal symbionts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hinkle, G -- Wetterer, J K -- Schultz, T R -- Sogin, M L -- GM32964/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1695-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Biological laboratory, Woods Hole, MA 02543.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7992052" target="_blank"〉PubMed〈/a〉
    Keywords: Agaricales/*classification/genetics/physiology ; Agaricus/classification/genetics ; Animals ; Ants/classification/*microbiology/physiology ; Biological Evolution ; *Genes, Fungal ; Molecular Sequence Data ; *Phylogeny ; RNA, Fungal/*genetics ; RNA, Ribosomal/*genetics ; RNA, Ribosomal, 16S/genetics ; Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-04-16
    Description: A phylogenetic framework inferred from comparisons of small subunit ribosomal RNA sequences describes the evolutionary origin and early branching patterns of the kingdom Animalia. Maximum likelihood analyses show the animal lineage is monophyletic and includes choanoflagellates. Within the metazoan assemblage, the divergence of sponges is followed by the Ctenophora, the Cnidaria plus the placozoan Trichoplax adhaerens, and finally by an unresolved polychotomy of bilateral animal phyla. From these data, it was inferred that animals and fungi share a unique evolutionary history and that their last common ancestor was a flagellated protist similar to extant choanoflagellates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wainright, P O -- Hinkle, G -- Sogin, M L -- Stickel, S K -- GM 32964/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 16;260(5106):340-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08903.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8469985" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; Ciliophora/genetics ; Eukaryota/genetics ; *Fungi/genetics ; Likelihood Functions ; *Phylogeny ; Porifera/genetics ; RNA, Ribosomal/chemistry/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-09-29
    Description: The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrison, Hilary G -- McArthur, Andrew G -- Gillin, Frances D -- Aley, Stephen B -- Adam, Rodney D -- Olsen, Gary J -- Best, Aaron A -- Cande, W Zacheus -- Chen, Feng -- Cipriano, Michael J -- Davids, Barbara J -- Dawson, Scott C -- Elmendorf, Heidi G -- Hehl, Adrian B -- Holder, Michael E -- Huse, Susan M -- Kim, Ulandt U -- Lasek-Nesselquist, Erica -- Manning, Gerard -- Nigam, Anuranjini -- Nixon, Julie E J -- Palm, Daniel -- Passamaneck, Nora E -- Prabhu, Anjali -- Reich, Claudia I -- Reiner, David S -- Samuelson, John -- Svard, Staffan G -- Sogin, Mitchell L -- AI42488/AI/NIAID NIH HHS/ -- AI43273/AI/NIAID NIH HHS/ -- AI51687/AI/NIAID NIH HHS/ -- R01 AI043273/AI/NIAID NIH HHS/ -- R01 AI048082/AI/NIAID NIH HHS/ -- R01 HG004164/HG/NHGRI NIH HHS/ -- R01 HG004164-01/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1921-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Biological Laboratory, Woods Hole, MA 02543-1015, USA. morrison@mbl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901334" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Biological Evolution ; DNA Replication/genetics ; *Eukaryotic Cells ; Gene Transfer, Horizontal ; Genes, Protozoan ; *Genome, Protozoan ; Genomics ; Giardia lamblia/classification/*genetics/physiology ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Phylogeny ; Protein Kinases/genetics/metabolism ; Protozoan Proteins/chemistry/genetics/metabolism ; RNA Processing, Post-Transcriptional ; Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-01-10
    Description: Strict one-to-one correspondence between codons and amino acids is thought to be an essential feature of the genetic code. However, we report that one codon can code for two different amino acids with the choice of the inserted amino acid determined by a specific 3' untranslated region structure and location of the dual-function codon within the messenger RNA (mRNA). We found that the codon UGA specifies insertion of selenocysteine and cysteine in the ciliate Euplotes crassus, that the dual use of this codon can occur even within the same gene, and that the structural arrangements of Euplotes mRNA preserve location-dependent dual function of UGA when expressed in mammalian cells. Thus, the genetic code supports the use of one codon to code for multiple amino acids.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088105/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088105/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turanov, Anton A -- Lobanov, Alexey V -- Fomenko, Dmitri E -- Morrison, Hilary G -- Sogin, Mitchell L -- Klobutcher, Lawrence A -- Hatfield, Dolph L -- Gladyshev, Vadim N -- AI058054/AI/NIAID NIH HHS/ -- GM061603/GM/NIGMS NIH HHS/ -- GM065204/GM/NIGMS NIH HHS/ -- R01 GM061603/GM/NIGMS NIH HHS/ -- R01 GM061603-04S2/GM/NIGMS NIH HHS/ -- ZIA BC010767-03/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 9;323(5911):259-61. doi: 10.1126/science.1164748.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19131629" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Codon/*genetics ; Codon, Terminator/*genetics ; Cysteine/*genetics/metabolism ; Euplotes/chemistry/*genetics ; *Genetic Code ; Humans ; Molecular Sequence Data ; Mutation ; Protozoan Proteins/biosynthesis/chemistry/genetics ; RNA, Protozoan/genetics/metabolism ; RNA, Transfer, Amino Acid-Specific/chemistry/genetics ; RNA, Transfer, Cys/chemistry/genetics ; Recombinant Fusion Proteins/metabolism ; Selenocysteine/*genetics/metabolism ; Selenoproteins/biosynthesis/chemistry/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1987-11-13
    Description: Two structurally distinct nuclear genes code for cytoplasmic small subunit ribosomal RNA's in the parasite Plasmodium berghei. Stable transcripts from one of the ribosomal RNA genes are found almost exclusively in those stages of the life cycle that develop in the mosquito. When the parasite infects the mammalian host, transcripts from the second gene become the predominant small subunit ribosomal RNA species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gunderson, J H -- Sogin, M L -- Wollett, G -- Hollingdale, M -- de la Cruz, V F -- Waters, A P -- McCutchan, T F -- GM 32964/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1987 Nov 13;238(4829):933-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3672135" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Genes ; Molecular Sequence Data ; Nucleic Acid Conformation ; Plasmodium/*genetics/growth & development ; RNA, Ribosomal/*genetics ; Ribosomes/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rosette agent of Chinook salmon (Oncorhynchus tshawytscha), initially described and characterized in the mid 1980s, is the cause of a serious infectious disease in the Pacific Northwest of North America. Previous work, utilizing rosette agent maintained by growth in embryo salmon cell-culture, has shown it to be a eukaryotic obligate intracellular parasite. However, its ultrastructural features do not suggest a relationship with any specific eukaryotic group. We have utilized a molecular approach to further investigate the phylogeny of rosette agent previously maintained in vitro during 1990 and 1991. We have amplified the genomic DNA encoding the small subunit ribosomal RNA (16S-like rRNA), and determined the complete DNA nucleotide sequence of this gene segment. Comparison with other eukaryotic 16S-like rRNA sequences suggests that the rosette agent shares a unique evolutionary history with choanoflagellates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...