ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-12-22
    Description: A human acute lymphoblastic leukemia (ALL) cell line that was transplanted into immune-deficient SCID mice proliferated in the hematopoietic tissues, invaded various organs, and led to the death of the mice. The distribution of leukemic cells in SCID mice was similar to the course of the disease in children. A-1 cells marked with a retrovirus vector showed clonal evolution after the transplant. SCID mice that were injected with bone marrow from three patients with non-T ALL had leukemic cells in their bone marrow and spleen. This in vivo model of human leukemia is an approach to understanding leukemic growth and progression and is a novel system for testing new treatment strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kamel-Reid, S -- Letarte, M -- Sirard, C -- Doedens, M -- Grunberger, T -- Fulop, G -- Freedman, M H -- Phillips, R A -- Dick, J E -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1597-600.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Hospital for Sick Children, Toronto, Ontario.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2595371" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/pathology ; Cell Line ; Clone Cells ; DNA, Neoplasm/isolation & purification ; Humans ; Immunologic Deficiency Syndromes/*pathology ; Kidney/pathology ; Liver/pathology ; Mice ; Mice, Mutant Strains ; Neoplasm Transplantation ; Precursor Cell Lymphoblastic Leukemia-Lymphoma/*pathology ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-14
    Description: In acute myeloid leukaemia (AML), the cell of origin, nature and biological consequences of initiating lesions, and order of subsequent mutations remain poorly understood, as AML is typically diagnosed without observation of a pre-leukaemic phase. Here, highly purified haematopoietic stem cells (HSCs), progenitor and mature cell fractions from the blood of AML patients were found to contain recurrent DNMT3A mutations (DNMT3A(mut)) at high allele frequency, but without coincident NPM1 mutations (NPM1c) present in AML blasts. DNMT3A(mut)-bearing HSCs showed a multilineage repopulation advantage over non-mutated HSCs in xenografts, establishing their identity as pre-leukaemic HSCs. Pre-leukaemic HSCs were found in remission samples, indicating that they survive chemotherapy. Therefore DNMT3A(mut) arises early in AML evolution, probably in HSCs, leading to a clonally expanded pool of pre-leukaemic HSCs from which AML evolves. Our findings provide a paradigm for the detection and treatment of pre-leukaemic clones before the acquisition of additional genetic lesions engenders greater therapeutic resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shlush, Liran I -- Zandi, Sasan -- Mitchell, Amanda -- Chen, Weihsu Claire -- Brandwein, Joseph M -- Gupta, Vikas -- Kennedy, James A -- Schimmer, Aaron D -- Schuh, Andre C -- Yee, Karen W -- McLeod, Jessica L -- Doedens, Monica -- Medeiros, Jessie J F -- Marke, Rene -- Kim, Hyeoung Joon -- Lee, Kwon -- McPherson, John D -- Hudson, Thomas J -- HALT Pan-Leukemia Gene Panel Consortium -- Brown, Andrew M K -- Yousif, Fouad -- Trinh, Quang M -- Stein, Lincoln D -- Minden, Mark D -- Wang, Jean C Y -- Dick, John E -- CSC-105367/Canadian Institutes of Health Research/Canada -- R21 CA152613/CA/NCI NIH HHS/ -- England -- Nature. 2014 Feb 20;506(7488):328-33. doi: 10.1038/nature13038. Epub 2014 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada [2]. ; Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada. ; 1] Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada [2] Department of Medicine, University of Toronto, Toronto, Ontario M5S 2J7, Canada [3] Division of Medical Oncology and Hematology, UHN, Toronto, Ontario M5G 2M9, Canada. ; 1] Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada [2] Department of Medicine, University of Toronto, Toronto, Ontario M5S 2J7, Canada [3] Division of Medical Oncology and Hematology, UHN, Toronto, Ontario M5G 2M9, Canada [4] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada. ; 1] Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada [2] Radboud University, Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands. ; Chonnam National University Hwasun Hospital, Genome Research Center for Hematopoietic Diseases, Gwangju 519-809, South Korea. ; 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada [2] Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada. ; 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada [2] Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada [3] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada. ; 1] Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; 1] Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Lineage ; Clone Cells/cytology/metabolism/pathology ; DNA (Cytosine-5-)-Methyltransferase/genetics/metabolism ; Drug Resistance, Neoplasm/drug effects ; Female ; Hematopoiesis ; Hematopoietic Stem Cells/*cytology/drug effects/metabolism/pathology ; Heterografts ; Humans ; Isocitrate Dehydrogenase/genetics ; Leukemia, Myeloid, Acute/diagnosis/drug therapy/genetics/*pathology ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mutation/genetics ; Neoplasm Transplantation ; Neoplastic Stem Cells/*cytology/drug effects/metabolism/pathology ; Nuclear Proteins/genetics ; Remission Induction ; T-Lymphocytes/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-02-28
    Description: Severe combined immunodeficient (SCID) mice transplanted with human bone marrow were treated with human mast cell growth factor, a fusion of interleukin-3 and granulocyte-macrophage colony-stimulating factor (PIXY321), or both, starting immediately or 1 month later. Immature human cells repopulated the mouse bone marrow with differentiated human cells of multiple myeloid and lymphoid lineages; inclusion of erythropoietin resulted in human red cells in the peripheral blood. The bone marrow of growth factor-treated mice contained both multipotential and committed myeloid and erythroid progenitors, whereas mice not given growth factors had few human cells and only granulocyte-macrophage progenitors. Thus, this system allows the detection of immature human cells, identification of the growth factors that regulate them, and the establishment of animal models of human hematopoietic diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lapidot, T -- Pflumio, F -- Doedens, M -- Murdoch, B -- Williams, D E -- Dick, J E -- New York, N.Y. -- Science. 1992 Feb 28;255(5048):1137-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1372131" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Cells ; *Bone Marrow Transplantation ; Cytokines/*pharmacology ; Erythropoietin/pharmacology ; Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology ; *Hematopoiesis ; Hematopoietic Cell Growth Factors/pharmacology ; *Hematopoietic Stem Cell Transplantation ; Humans ; Interleukin-3/pharmacology ; Mice ; Mice, SCID ; Recombinant Fusion Proteins/pharmacology ; Stem Cell Factor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 1991-12-01
    Description: Bone marrow samples from patients with pre-B acute lymphoblastic leukemia (pre-B ALL), either at diagnosis or at relapse, were transplanted into scid mice to determine whether these freshly obtained leukemic cells could proliferate in vivo and whether there were any differences in their in vivo growth characteristics. Cells from three patients who relapsed within 13 months of diagnosis proliferated rapidly in the murine bone marrow, spleen, and thymus, invaded peripheral organs, and resulted in morbidity and mortality of the animals within 4 to 16 weeks. Cells from two patients who relapsed 3.5 years after diagnosis grew much slower than the early relapse samples, taking up to 30 weeks to infiltrate the bone marrow of recipient mice. In contrast, leukemic cells were absent or were detected at low numbers in scid mice transplanted with cells obtained at diagnosis from three patients who have not yet relapsed. These results show an increased ability of leukemic cells from patients with aggressive lymphoblastic leukemia of poor prognosis to proliferate in scid mice.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-04-01
    Description: We have previously shown that intravenously injected peripheral blood (PB) or bone marrow (BM) cells from newly diagnosed chronic myeloid leukemia (CML) patients can engraft the BM of sublethally irradiated severe combined immunodeficient (SCID) mice. We now report engraftment results for chronic phase CML cells in nonobese diabetic (NOD)/SCID recipients which show the superiority of this latter model. Transplantation of NOD/SCID mice with 7 to 10 × 107 patient PB or BM cells resulted in the continuing presence of human cells in the BM of the mice for up to 7 months, and primitive human CD34+ cells, including those detectable as colony-forming cells (CFC), as long-term culture-initiating cells, or by their coexpression of Thy-1, were found in a higher proportion of the NOD/SCID recipients analyzed, and at higher levels than were seen previously in SCID recipients. The human CFC and total human cells present in the BM of the NOD/SCID mice transplanted with CML cells also contained higher proportions of leukemic cells than were obtained in the SCID model, and NOD/SCID mice could be repopulated with transplants of enriched CD34+ cells from patients with CML. These results suggest that the NOD/SCID mouse may allow greater engraftment and amplification of both normal and leukemic (Ph+) cells sufficient for the quantitation and characterization of the normal and leukemic stem cells present in patients with CML. In addition, this model should make practical the investigation of mechanisms underlying progression of the disease and the development of more effective in vivo therapies.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-08-01
    Description: The ability to transfer new genetic material into human hematopoietic cells provides the foundation for characterizing the organization and developmental program of human hematopoietic stem cells. It also provides a valuable model in which to test gene transfer and long-term expression in human hematopoietic cells as a prelude to human gene therapy. At the present time such studies are limited by the absence of in vivo assays for human stem cells, although recent descriptions of the engraftment of human hematopoietic cells in immune-deficient mice may provide the basis for such an assay. This study focuses on the establishment of conditions required for high efficiency retrovirus- mediated gene transfer into human hematopoietic progenitors that can be assayed in vitro in short-term colony assays and in vivo in immune- deficient mice. Here we report that a 24-hour preincubation of human bone marrow in 5637-conditioned medium, before infection, increases gene transfer efficiency into in vitro colony-forming cells by sixfold; interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) provide the same magnitude increase as 5637-conditioned medium. In contrast, incubation in recombinant growth factors IL-1, IL-3, and granulocyte- macrophage colony-stimulating factor increases gene transfer efficiency by 1.5- to 3-fold. Furthermore, preselection in high concentrations of G418 results in a population of cells significantly enriched for G418- resistant progenitors (up to 100%). These results, obtained using detailed survival curves based on colony formation in G418, have been substantiated by directly detecting the neo gene in individual colonies using the polymerase chain reaction. Using these optimized protocols, human bone marrow cells were genetically manipulated with a neo retrovirus vector and transplanted into immune-deficient bg/nu/xid mice. At 1 month and 4 months after the transplant, the hematopoietic tissues of these animals remained engrafted with genetically manipulated human cells. More importantly, G418-resistant progenitors that contained the neo gene were recovered from the bone marrow and spleen of engrafted animals after 4 months. These experiments establish the feasibility of characterizing human stem cells using the unique retrovirus integration site as a clonal marker, similar to techniques developed to elucidate the murine stem cell hierarchy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-02-15
    Description: Progress in understanding the abnormal regulation of hematopoiesis in chronic myelogenous leukemia (CML) would be facilitated if neoplastic cells, at all stages of the disease, could be studied in an animal model. In this report, we show that irradiated severe combined immunodeficient (SCID) mice can be transplanted with both normal (Philadelphia chromosome [Ph]-negative) and neoplastic (Ph+) cells from CML patients with either chronic or blast phase disease. Mice transplanted with peripheral blood (PB) or bone marrow (BM) cells from 9 of 12 chronic phase CML patients were well engrafted with human cells including multilineage colony-forming progenitors and CD34+ cells for at least 90 days posttransplantation. Repeated posttransplant injections of cytokines did not enhance the number of engrafted human cells. Interestingly, approximately 70% of the human progenitors found in the engrafted SCID BM were Ph-, suggesting that the growth of primitive normal cells is favored in this in vivo transplant model. A similar number of normal cells were found in mice transplanted with either PB or BM cells, suggesting that elevated numbers of primitive normal cells are present in CML PB. When cells from patients with CML in either myeloid or lymphoid blast crisis were transplanted into SCID mice, the BM of these mice was more rapidly repopulated and to a higher level than that observed with transplants of chronic phase cells. Moreover, all human colony-forming progenitors present in the BM of mice transplanted with blast crisis cells were Ph+, and the majority of cells showed the same morphological features of the blast crisis cells originally transplanted. These experiments provide a starting point for the creation of an animal model of CML and establish the feasibility of using this model for the future characterization of transplantable CML stem cells during disease progression.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-08-01
    Description: The ability to transfer new genetic material into human hematopoietic cells provides the foundation for characterizing the organization and developmental program of human hematopoietic stem cells. It also provides a valuable model in which to test gene transfer and long-term expression in human hematopoietic cells as a prelude to human gene therapy. At the present time such studies are limited by the absence of in vivo assays for human stem cells, although recent descriptions of the engraftment of human hematopoietic cells in immune-deficient mice may provide the basis for such an assay. This study focuses on the establishment of conditions required for high efficiency retrovirus- mediated gene transfer into human hematopoietic progenitors that can be assayed in vitro in short-term colony assays and in vivo in immune- deficient mice. Here we report that a 24-hour preincubation of human bone marrow in 5637-conditioned medium, before infection, increases gene transfer efficiency into in vitro colony-forming cells by sixfold; interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) provide the same magnitude increase as 5637-conditioned medium. In contrast, incubation in recombinant growth factors IL-1, IL-3, and granulocyte- macrophage colony-stimulating factor increases gene transfer efficiency by 1.5- to 3-fold. Furthermore, preselection in high concentrations of G418 results in a population of cells significantly enriched for G418- resistant progenitors (up to 100%). These results, obtained using detailed survival curves based on colony formation in G418, have been substantiated by directly detecting the neo gene in individual colonies using the polymerase chain reaction. Using these optimized protocols, human bone marrow cells were genetically manipulated with a neo retrovirus vector and transplanted into immune-deficient bg/nu/xid mice. At 1 month and 4 months after the transplant, the hematopoietic tissues of these animals remained engrafted with genetically manipulated human cells. More importantly, G418-resistant progenitors that contained the neo gene were recovered from the bone marrow and spleen of engrafted animals after 4 months. These experiments establish the feasibility of characterizing human stem cells using the unique retrovirus integration site as a clonal marker, similar to techniques developed to elucidate the murine stem cell hierarchy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1991-12-01
    Description: Bone marrow samples from patients with pre-B acute lymphoblastic leukemia (pre-B ALL), either at diagnosis or at relapse, were transplanted into scid mice to determine whether these freshly obtained leukemic cells could proliferate in vivo and whether there were any differences in their in vivo growth characteristics. Cells from three patients who relapsed within 13 months of diagnosis proliferated rapidly in the murine bone marrow, spleen, and thymus, invaded peripheral organs, and resulted in morbidity and mortality of the animals within 4 to 16 weeks. Cells from two patients who relapsed 3.5 years after diagnosis grew much slower than the early relapse samples, taking up to 30 weeks to infiltrate the bone marrow of recipient mice. In contrast, leukemic cells were absent or were detected at low numbers in scid mice transplanted with cells obtained at diagnosis from three patients who have not yet relapsed. These results show an increased ability of leukemic cells from patients with aggressive lymphoblastic leukemia of poor prognosis to proliferate in scid mice.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...