ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-01
    Description: The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability. The increase in aridity predicted for the twenty-first century in many drylands worldwide may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delgado-Baquerizo, Manuel -- Maestre, Fernando T -- Gallardo, Antonio -- Bowker, Matthew A -- Wallenstein, Matthew D -- Quero, Jose Luis -- Ochoa, Victoria -- Gozalo, Beatriz -- Garcia-Gomez, Miguel -- Soliveres, Santiago -- Garcia-Palacios, Pablo -- Berdugo, Miguel -- Valencia, Enrique -- Escolar, Cristina -- Arredondo, Tulio -- Barraza-Zepeda, Claudia -- Bran, Donaldo -- Carreira, Jose Antonio -- Chaieb, Mohamed -- Conceicao, Abel A -- Derak, Mchich -- Eldridge, David J -- Escudero, Adrian -- Espinosa, Carlos I -- Gaitan, Juan -- Gatica, M Gabriel -- Gomez-Gonzalez, Susana -- Guzman, Elizabeth -- Gutierrez, Julio R -- Florentino, Adriana -- Hepper, Estela -- Hernandez, Rosa M -- Huber-Sannwald, Elisabeth -- Jankju, Mohammad -- Liu, Jushan -- Mau, Rebecca L -- Miriti, Maria -- Monerris, Jorge -- Naseri, Kamal -- Noumi, Zouhaier -- Polo, Vicente -- Prina, Anibal -- Pucheta, Eduardo -- Ramirez, Elizabeth -- Ramirez-Collantes, David A -- Romao, Roberto -- Tighe, Matthew -- Torres, Duilio -- Torres-Diaz, Cristian -- Ungar, Eugene D -- Val, James -- Wamiti, Wanyoike -- Wang, Deli -- Zaady, Eli -- England -- Nature. 2013 Oct 31;502(7473):672-6. doi: 10.1038/nature12670.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Departamento de Sistemas Fisicos, Quimicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera, kilometro 1, 41013 Sevilla, Spain [2] Area de Biodiversidad y Conservacion, Departamento de Biologia y Geologia, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, Calle Tulipan Sin Numero, 28933 Mostoles, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172979" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum Silicates/analysis ; Biomass ; Carbon/analysis/metabolism ; Carbon Cycle ; Climate Change ; *Desert Climate ; *Desiccation ; *Ecosystem ; *Geography ; Models, Theoretical ; Nitrogen/analysis/metabolism ; Nitrogen Cycle ; Phosphoric Monoester Hydrolases/analysis/metabolism ; Phosphorus/analysis/metabolism ; Plants/metabolism ; Soil/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-01-17
    Description: Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558739/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558739/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maestre, Fernando T -- Quero, Jose L -- Gotelli, Nicholas J -- Escudero, Adrian -- Ochoa, Victoria -- Delgado-Baquerizo, Manuel -- Garcia-Gomez, Miguel -- Bowker, Matthew A -- Soliveres, Santiago -- Escolar, Cristina -- Garcia-Palacios, Pablo -- Berdugo, Miguel -- Valencia, Enrique -- Gozalo, Beatriz -- Gallardo, Antonio -- Aguilera, Lorgio -- Arredondo, Tulio -- Blones, Julio -- Boeken, Bertrand -- Bran, Donaldo -- Conceicao, Abel A -- Cabrera, Omar -- Chaieb, Mohamed -- Derak, McHich -- Eldridge, David J -- Espinosa, Carlos I -- Florentino, Adriana -- Gaitan, Juan -- Gatica, M Gabriel -- Ghiloufi, Wahida -- Gomez-Gonzalez, Susana -- Gutierrez, Julio R -- Hernandez, Rosa M -- Huang, Xuewen -- Huber-Sannwald, Elisabeth -- Jankju, Mohammad -- Miriti, Maria -- Monerris, Jorge -- Mau, Rebecca L -- Morici, Ernesto -- Naseri, Kamal -- Ospina, Abelardo -- Polo, Vicente -- Prina, Anibal -- Pucheta, Eduardo -- Ramirez-Collantes, David A -- Romao, Roberto -- Tighe, Matthew -- Torres-Diaz, Cristian -- Val, James -- Veiga, Jose P -- Wang, Deli -- Zaady, Eli -- 242658/European Research Council/International -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):214-8. doi: 10.1126/science.1215442.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Area de Biodiversidad y Conservacion, Departamento de Biologia y Geologia, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, Calle Tulipan Sin Numero, 28933 Mostoles, Spain. fernando.maestre@urjc.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246775" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Climate ; Climate Change ; Conservation of Natural Resources ; *Ecosystem ; Geography ; Geological Phenomena ; Models, Statistical ; *Plants ; Regression Analysis ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-01
    Print ISSN: 0038-0717
    Electronic ISSN: 1879-3428
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-19
    Description: The immense diversity of soil bacterial communities has stymied efforts to characterize individual taxa and document their global distributions. We analyzed soils from 237 locations across six continents and found that only 2% of bacterial phylotypes (~500 phylotypes) consistently accounted for almost half of the soil bacterial communities worldwide. Despite the overwhelming diversity of bacterial communities, relatively few bacterial taxa are abundant in soils globally. We clustered these dominant taxa into ecological groups to build the first global atlas of soil bacterial taxa. Our study narrows down the immense number of bacterial taxa to a "most wanted" list that will be fruitful targets for genomic and cultivation-based efforts aimed at improving our understanding of soil microbes and their contributions to ecosystem functioning.
    Keywords: Ecology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-13
    Description: Climatic conditions shift gradually over millennia, altering the rates at which carbon (C) is fixed from the atmosphere and stored in the soil. However, legacy impacts of past climates on current soil C stocks are poorly understood. We used data from more than 5000 terrestrial sites from three global and regional data sets to identify the relative importance of current and past (Last Glacial Maximum and mid-Holocene) climatic conditions in regulating soil C stocks in natural and agricultural areas. Paleoclimate always explained a greater amount of the variance in soil C stocks than current climate at regional and global scales. Our results indicate that climatic legacies help determine global soil C stocks in terrestrial ecosystems where agriculture is highly dependent on current climatic conditions. Our findings emphasize the importance of considering how climate legacies influence soil C content, allowing us to improve quantitative predictions of global C stocks under different climatic scenarios.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-15
    Description: The technical comment from Sanderman provides a unique opportunity to deepen our understanding of the mechanisms explaining the role of paleoclimate in the contemporary distribution of global soil C content, as reported in our article. Sanderman argues that the role of paleoclimate in predicting soil C content might be accounted for by using slowly changing soil properties as predictors. This is a key point that we highlighted in the supplementary materials of our article, which demonstrated, to the degree possible given available data, that soil properties alone cannot account for the unique portion of the variation in soil C explained by paleoclimate. Sanderman also raised an interesting question about how paleoclimate might explain the contemporary amount of C in our soils if such a C is relatively new, particularly in the topsoil layer. There is one relatively simple, yet plausible, reason. A soil with a higher amount of C, a consequence of accumulation over millennia, might promote higher contemporary C fixation rates, leading to a higher amount of new C in our soils. Thus, paleoclimate can be a good predictor of the amount of soil C in soil, but not necessarily of its age. In summary, Sanderman did not question the validity of our results but rather provides an alternative potential mechanistic explanation for the conclusion of our original article, that is, that paleoclimate explains a unique portion of the global variation of soil C content that cannot be accounted for by current climate, vegetation attributes, or soil properties.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-08-01
    Print ISSN: 0038-0717
    Electronic ISSN: 1879-3428
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-06-01
    Print ISSN: 1002-0160
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...