ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-01-17
    Description: Modern gnathostomes (jawed vertebrates) emerged in the early Palaeozoic era, but this event remains unclear owing to a scant early fossil record. The exclusively Palaeozoic 'acanthodians' are possibly the earliest gnathostome group and exhibit a mosaic of shark- and bony fish-like characters that has long given them prominence in discussions of early gnathostome evolution. Their relationships with modern gnathostomes have remained mysterious, partly because their un-mineralized endoskeletons rarely fossilized. Here I present the first-known braincase of an Early Devonian (approximately 418-412 Myr bp) acanthodian, Ptomacanthus anglicus, and re-evaluate the interrelationships of basal gnathostomes. Acanthodian braincases have previously been represented by a single genus, Acanthodes, which occurs more than 100 million years later in the fossil record. The braincase of Ptomacanthus differs radically from the osteichthyan-like braincase of Acanthodes in exhibiting several plesiomorphic features shared with placoderms and some early chondrichthyans. Most striking is its extremely short sphenoid region and its jaw suspension, which displays features intermediate between some Palaeozoic chondrichthyans and osteichthyans. Phylogenetic analysis resolves Ptomacanthus as either the most basal chondrichthyan or as the sister group of all living gnathostomes. These new data alter earlier conceptions of basal gnathostome phylogeny and thus help to provide a more detailed picture of the acquisition of early gnathostome characters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brazeau, Martin D -- England -- Nature. 2009 Jan 15;457(7227):305-8. doi: 10.1038/nature07436.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Subdepartment of Evolutionary Organismal Biology, Department of Physiology and Developmental Biology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18A, SE-752 36 Uppsala, Sweden. martin.brazeau@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19148098" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Fishes/*anatomy & histology/*classification ; *Fossils ; History, Ancient ; Jaw/*anatomy & histology ; Phylogeny ; Skull/*anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-13
    Description: The phylogeny of Silurian and Devonian (443-358 million years (Myr) ago) fishes remains the foremost problem in the study of the origin of modern gnathostomes (jawed vertebrates). A central question concerns the morphology of the last common ancestor of living jawed vertebrates, with competing hypotheses advancing either a chondrichthyan- or osteichthyan-like model. Here we present Janusiscus schultzei gen. et sp. nov., an Early Devonian (approximately 415 Myr ago) gnathostome from Siberia previously interpreted as a ray-finned fish, which provides important new information about cranial anatomy near the last common ancestor of chondrichthyans and osteichthyans. The skull roof of Janusiscus resembles that of early osteichthyans, with large plates bearing vermiform ridges and partially enclosed sensory canals. High-resolution computed tomography (CT) reveals a braincase bearing characters typically associated with either chondrichthyans (large hypophyseal opening accommodating the internal carotid arteries) or osteichthyans (facial nerve exiting through jugular canal, endolymphatic ducts exiting posterior to the skull roof) but lacking a ventral cranial fissure, the presence of which is considered a derived feature of crown gnathostomes. A conjunction of well-developed cranial processes in Janusiscus helps unify the comparative anatomy of early jawed vertebrate neurocrania, clarifying primary homologies in 'placoderms', osteichthyans and chondrichthyans. Phylogenetic analysis further supports the chondrichthyan affinities of 'acanthodians', and places Janusiscus and the enigmatic Ramirosuarezia in a polytomy with crown gnathostomes. The close correspondence between the skull roof of Janusiscus and that of osteichthyans suggests that an extensive dermal skeleton was present in the last common ancestor of jawed vertebrates, but ambiguities arise from uncertainties in the anatomy of Ramirosuarezia. The unexpected contrast between endoskeletal structure in Janusiscus and its superficially osteichthyan-like dermal skeleton highlights the potential importance of other incompletely known Siluro-Devonian 'bony fishes' for reconstructing patterns of trait evolution near the origin of modern gnathostomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giles, Sam -- Friedman, Matt -- Brazeau, Martin D -- England -- Nature. 2015 Apr 2;520(7545):82-5. doi: 10.1038/nature14065. Epub 2015 Jan 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK. ; 1] Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands [2] Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25581798" target="_blank"〉PubMed〈/a〉
    Keywords: Anatomy, Comparative ; Animals ; Fishes/*anatomy & histology/*classification ; *Fossils ; *Phylogeny ; Siberia ; Skull/*anatomy & histology ; X-Ray Microtomography
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Friedman, Matt -- Brazeau, Martin D -- England -- Nature. 2013 Oct 10;502(7470):175-7. doi: 10.1038/nature12690. Epub 2013 Sep 25.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24067615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Fishes/*anatomy & histology/*classification ; *Fossils ; Jaw/*anatomy & histology ; *Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-08
    Description: More than 99 per cent of the roughly 58,000 living vertebrate species have jaws. This major clade, whose members are collectively known as gnathostomes ('jawed mouths'), made its earliest definitive appearance in the Silurian period, 444-416 million years (Myr) ago, with both the origin of the modern (crown-group) radiation and the presumptive invasion of land occurring by the end of the Devonian period (359 Myr ago). These events coincided with a major faunal shift that remains apparent today: the transition from Silurian ecosystems dominated by jawless fishes (agnathans) to younger assemblages composed almost exclusively of gnathostomes. This pattern has inspired several qualitative descriptions of the trophic radiation and ecological ascendance of the earliest jawed vertebrates. Here we present a quantitative analysis of functional variation in early gnathostome mandibular elements, placing constraints on our understanding of evolutionary patterns during this critical interval. We document an initial increase in functional disparity in the Silurian that stabilized by the first stage of the Devonian, before the occurrence of an Emsian ( approximately 400 Myr ago) oxygenation event implicated in the trophic radiation of vertebrates. Subsequent taxonomic diversification during the Devonian did not result in increased functional variation; instead, new taxa revisited and elaborated on established mandibular designs. Devonian functional space is dominated by lobe-finned fishes and 'placoderms'; high disparity within the latter implies considerable trophic innovation among jaw-bearing stem gnathostomes. By contrast, the major groups of living vertebrates--ray-finned fishes and tetrapods--show surprisingly conservative mandibular morphologies with little indication of functional diversification or innovation. Devonian gnathostomes reached a point where they ceased to accrue further mandibular functional disparity before becoming taxonomic dominants relative to 'ostracoderm'-grade jawless fishes, providing a new perspective on classic adaptive hypotheses concerning this fundamental shift in vertebrate biodiversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, Philip S L -- Friedman, Matt -- Brazeau, Martin D -- Rayfield, Emily J -- England -- Nature. 2011 Jul 6;476(7359):206-9. doi: 10.1038/nature10207.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. phil.anderson@bristol.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21734660" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Biological Evolution ; Fishes/anatomy & histology/classification/physiology ; Fossils ; History, Ancient ; Jaw/*anatomy & histology/physiology ; Sample Size ; Vertebrates/*anatomy & histology/*classification/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-24
    Description: Fossils of early gnathostomes (or jawed vertebrates) have been the focus of study for nearly two centuries. They yield key clues about the evolutionary assembly of the group's common body plan, as well the divergence of the two living gnathostome lineages: the cartilaginous and bony vertebrates. A series of remarkable new palaeontological discoveries, analytical advances and innovative reinterpretations of existing fossil archives have fundamentally altered a decades-old consensus on the relationships of extinct gnathostomes, delivering a new evolutionary framework for exploring major questions that remain unanswered, including the origin of jaws.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648279/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648279/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brazeau, Martin D -- Friedman, Matt -- 311092/European Research Council/International -- England -- Nature. 2015 Apr 23;520(7548):490-7. doi: 10.1038/nature14438.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. ; Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25903631" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Fossils ; Jaw/anatomy & histology ; *Phylogeny ; Vertebrates/*anatomy & histology/embryology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...