ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract The Nadir and Occultation for MArs Discovery (NOMAD) instrument on board ExoMars Trace Gas Orbiter (TGO) measured a large increase in water vapor at altitudes in the range of 40‐100 km during the 2018 global dust storm on Mars. Using a three‐dimensional general circulation model, we examine the mechanism responsible for the enhancement of water vapor in the upper atmosphere. Experiments with different prescribed vertical profiles of dust show that when more dust is present higher in the atmosphere the temperature increases and the amount of water ascending over the tropics is not limited by saturation until reaching heights of 70‐100 km. The warmer temperatures allow more water to ascend to the mesosphere. Photochemical simulations show a strong increase in high‐altitude atomic hydrogen following the high‐altitude water vapor increase by a few days.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-15
    Description: Meiotic crossovers (COs) have two important roles, shuffling genetic information and ensuring proper chromosome segregation. Despite their importance and a large excess of precursors (i.e., DNA double-strand breaks, DSBs), the number of COs is tightly regulated, typically one to three per chromosome pair. The mechanisms ensuring that most DSBs are...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-18
    Description: We report the detection of intense emission from magnesium and iron in Mars' atmosphere caused by a meteor shower following Comet Siding Spring's close encounter with Mars. The observations were made with the Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft orbiting Mars. Ionized magnesium caused the brightest emission from the planet's atmosphere for many hours, resulting from resonant scattering of solar ultraviolet light. Modeling suggests a substantial fluence of low-density dust particles 1–100 µm in size, with the large amount and small size contrary to predictions. The event created a temporary planet-wide ionospheric layer below Mars' main dayside ionosphere. The dramatic meteor shower response at Mars is starkly different from the case at Earth, where a steady state metal layer is always observable but perturbations caused by even the strongest meteor showers are challenging to detect.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-06
    Description: We report a comprehensive study of Mars dayglow observations focusing on upper atmospheric structure and seasonal variability. We analyzed 744 vertical brightness profiles comprised of ∼109,300 spectra obtained with the Imaging Ultraviolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite. The dayglow emission spectra show features similar to previous UV measurements at Mars. We find a significant drop in thermospheric scale height and temperature between L S  = 218° and L S  = 337–352°, attributed primarily to the decrease in solar activity and increase in heliocentric distance. We report the detection of a second, low-altitude peak in the emission profile of OI 297.2 nm, confirmation of the prediction that the absorption of solar Lyman alpha emission is an important energy source there. The UV doublet peak intensity is well correlated with simultaneous observations of solar 17–22 nm irradiance at Mars.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-07
    Description: The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bougher, S -- Jakosky, B -- Halekas, J -- Grebowsky, J -- Luhmann, J -- Mahaffy, P -- Connerney, J -- Eparvier, F -- Ergun, R -- Larson, D -- McFadden, J -- Mitchell, D -- Schneider, N -- Zurek, R -- Mazelle, C -- Andersson, L -- Andrews, D -- Baird, D -- Baker, D N -- Bell, J M -- Benna, M -- Brain, D -- Chaffin, M -- Chamberlin, P -- Chaufray, J-Y -- Clarke, J -- Collinson, G -- Combi, M -- Crary, F -- Cravens, T -- Crismani, M -- Curry, S -- Curtis, D -- Deighan, J -- Delory, G -- Dewey, R -- DiBraccio, G -- Dong, C -- Dong, Y -- Dunn, P -- Elrod, M -- England, S -- Eriksson, A -- Espley, J -- Evans, S -- Fang, X -- Fillingim, M -- Fortier, K -- Fowler, C M -- Fox, J -- Groller, H -- Guzewich, S -- Hara, T -- Harada, Y -- Holsclaw, G -- Jain, S K -- Jolitz, R -- Leblanc, F -- Lee, C O -- Lee, Y -- Lefevre, F -- Lillis, R -- Livi, R -- Lo, D -- Ma, Y -- Mayyasi, M -- McClintock, W -- McEnulty, T -- Modolo, R -- Montmessin, F -- Morooka, M -- Nagy, A -- Olsen, K -- Peterson, W -- Rahmati, A -- Ruhunusiri, S -- Russell, C T -- Sakai, S -- Sauvaud, J-A -- Seki, K -- Steckiewicz, M -- Stevens, M -- Stewart, A I F -- Stiepen, A -- Stone, S -- Tenishev, V -- Thiemann, E -- Tolson, R -- Toublanc, D -- Vogt, M -- Weber, T -- Withers, P -- Woods, T -- Yelle, R -- New York, N.Y. -- Science. 2015 Nov 6;350(6261):aad0459. doi: 10.1126/science.aad0459.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CLaSP Department, University of Michigan, Ann Arbor, MI, USA. bougher@umich.edu. ; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, USA. ; Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA. ; NASA/Goddard Space Flight Center, Greenbelt, MD, USA. ; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, USA. ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. ; CNRS/Institut de Recherche en Astrophysique et Planetologie, Toulouse, France. University Paul Sabatier, Toulouse, France. ; Swedish Institute of Space Physics, Kiruna, Sweden. ; NASA/Johnson Space Center, Houston, TX, USA. ; National Institute of Aerospace, Hampton, VA, USA. ; Laboratoire Atmospheres, Milieux, Observations Spatiales /CNRS, Verrieres-le-Buisson, France. ; Department of Astronomy, Boston University, Boston, MA, USA. ; CLaSP Department, University of Michigan, Ann Arbor, MI, USA. ; Department of Physics and Astronomy, University of Kansas, Lawrence, KS, USA. ; Computational Physics, Springfield, VA, USA. ; Department of Physics, Wright State University, Fairborn, OH, USA. ; Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA. ; Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA, USA. ; Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, Japan. ; Naval Research Laboratory, Washington, DC, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26542579" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-07
    Description: Planetary auroras reveal the complex interplay between an atmosphere and the surrounding plasma environment. We report the discovery of low-altitude, diffuse auroras spanning much of Mars' northern hemisphere, coincident with a solar energetic particle outburst. The Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, detected auroral emission in virtually all nightside observations for ~5 days, spanning nearly all geographic longitudes. Emission extended down to ~60 kilometer (km) altitude (1 microbar), deeper than confirmed at any other planet. Solar energetic particles were observed up to 200 kilo--electron volts; these particles are capable of penetrating down to the 60 km altitude. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit auroras more globally than Earth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schneider, N M -- Deighan, J I -- Jain, S K -- Stiepen, A -- Stewart, A I F -- Larson, D -- Mitchell, D L -- Mazelle, C -- Lee, C O -- Lillis, R J -- Evans, J S -- Brain, D -- Stevens, M H -- McClintock, W E -- Chaffin, M S -- Crismani, M -- Holsclaw, G M -- Lefevre, F -- Lo, D Y -- Clarke, J T -- Montmessin, F -- Jakosky, B M -- New York, N.Y. -- Science. 2015 Nov 6;350(6261):aad0313. doi: 10.1126/science.aad0313.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Boulder, CO 80303, USA. nick.schneider@lasp.colorado.edu. ; Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Boulder, CO 80303, USA. ; Space Sciences Lab, University of California, Berkeley, Berkeley, CA 94720, USA. ; Institut de Recherche en Astrophysique et Planetologie (IRAP), CNRS, Toulouse, France. University Paul Sabatier, IRAP, CNRS, Toulouse, France. ; Computational Physics, Inc, Springfield, VA 22151, USA. ; Space Science Division, Naval Research Laboratory, Washington, DC 20375, USA. ; Laboratoire Atmospheres, Milieux, Observations Spatiales, Institut Pierre Simon Laplace, Guyancourt, France. ; Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA. ; Center for Space Physics, Boston University, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26542577" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-07
    Description: Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jakosky, B M -- Grebowsky, J M -- Luhmann, J G -- Connerney, J -- Eparvier, F -- Ergun, R -- Halekas, J -- Larson, D -- Mahaffy, P -- McFadden, J -- Mitchell, D F -- Schneider, N -- Zurek, R -- Bougher, S -- Brain, D -- Ma, Y J -- Mazelle, C -- Andersson, L -- Andrews, D -- Baird, D -- Baker, D -- Bell, J M -- Benna, M -- Chaffin, M -- Chamberlin, P -- Chaufray, Y-Y -- Clarke, J -- Collinson, G -- Combi, M -- Crary, F -- Cravens, T -- Crismani, M -- Curry, S -- Curtis, D -- Deighan, J -- Delory, G -- Dewey, R -- DiBraccio, G -- Dong, C -- Dong, Y -- Dunn, P -- Elrod, M -- England, S -- Eriksson, A -- Espley, J -- Evans, S -- Fang, X -- Fillingim, M -- Fortier, K -- Fowler, C M -- Fox, J -- Groller, H -- Guzewich, S -- Hara, T -- Harada, Y -- Holsclaw, G -- Jain, S K -- Jolitz, R -- Leblanc, F -- Lee, C O -- Lee, Y -- Lefevre, F -- Lillis, R -- Livi, R -- Lo, D -- Mayyasi, M -- McClintock, W -- McEnulty, T -- Modolo, R -- Montmessin, F -- Morooka, M -- Nagy, A -- Olsen, K -- Peterson, W -- Rahmati, A -- Ruhunusiri, S -- Russell, C T -- Sakai, S -- Sauvaud, J-A -- Seki, K -- Steckiewicz, M -- Stevens, M -- Stewart, A I F -- Stiepen, A -- Stone, S -- Tenishev, V -- Thiemann, E -- Tolson, R -- Toublanc, D -- Vogt, M -- Weber, T -- Withers, P -- Woods, T -- Yelle, R -- New York, N.Y. -- Science. 2015 Nov 6;350(6261):aad0210. doi: 10.1126/science.aad0210.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Colorado, Boulder, CO, USA. bruce.jakosky@lasp.colorado.edu. ; NASA/Goddard Space Flight Center, Greenbelt, MD, USA. ; University of California at Berkeley, Berkeley, CA, USA. ; University of Colorado, Boulder, CO, USA. ; University of Iowa, Iowa City, IA, USA. ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. ; University of Michigan, Ann Arbor, MI, USA. ; University of California at Los Angeles, Los Angeles, CA, USA. ; CNRS-Institut de Recherche en Astrophysique et Planetologie (IRAP), Toulouse, France. University Paul Sabatier, Toulouse, France. ; Swedish Institute of Space Physics, Uppsala, Sweden. ; NASA/Johnson Space Center, Houston, TX, USA. ; National Institute of Aerospace, Hampton, VA, USA. ; Laboratoire atmospheres, milieux et observations spatiales (LATMOS)-CNRS, Paris, France. ; Boston University, Boston, MA, USA. ; University of Kansas, Lawrence, KS, USA. ; Computational Physics, Inc., Boulder, CO, USA. ; Wright State University, Dayton, OH, USA. ; University of Arizona, Tucson, AZ, USA. ; Nagoya University, Nagoya, Japan. ; Naval Research Laboratory, Washington, DC, USA. ; North Carolina State University, Raleigh, NC, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26542576" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-10
    Description: We report observations of Martian mesospheric ice clouds and thermospheric scale heights by the Imaging Ultraviolet Spectrograph on NASA's Mars Atmosphere and Volatile Evolution mission. The clouds are observed between 6 AM and 8 AM local time using mid-UV limb observations between 60 and 80 km tangent altitude where ice particles that scatter sunlight can appear as detached layers near the equator. The equatorial longitudinal distribution shows populations of clouds near -110° E and -10° E as well as a population near 90° E, which does not have a clear precedent. The cloud populations indicate a wave 3 pattern near 70 km, which is confirmed by independent mesospheric temperature observations. Scale heights 100 km above the clouds derived from concurrent IUVS observations also reveal a wave 3 longitudinal structure, suggesting that the temperature oscillations enabling the formation of mesospheric clouds couple to the upper atmosphere.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-29
    Description: The MAVEN IUVS instrument contains an echelle spectrograph channel designed to measure D and H Ly α emissions from the upper atmosphere of Mars. This channel has successfully recorded both emissions, which are produced by resonant scattering of solar emission, over the course of most of a martian year. The fundamental purpose of these measurements is to understand the physical principles underlying the escape of H and D from the upper atmosphere into space, and thereby to relate present-day measurements of an enhanced HDO/H 2 O ratio in the bulk atmosphere to the water escape history of Mars. Variations in these emissions independent of the solar flux reflect changes in the density and/or temperature of the species in the upper atmosphere. The MAVEN measurements show that the densities of both H and D vary by an order of magnitude over a martian year, and not always in synch with each other. This discovery has relevance to the processes by which H and D escape into space. One needs to understand the controlling factors to be able to extrapolate back in time to determine the water escape history from Mars at times when the atmosphere was thicker, when the solar flux and solar wind were stronger, etc. Further measurements will be able to identify the specific controlling factors for the large changes in H and D, which likely result in large changes in the escape fluxes of both species.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-11-06
    Description: We present direct number density retrievals of carbon dioxide (CO 2 ) and molecular nitrogen (N 2 ) for the upper atmosphere of Mars using limb scan observations during October and November 2014 by the Imaging Ultraviolet Spectrograph on board NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We use retrieved CO 2 densities to derive temperature variability between 170 and 220 km. Analysis of the data shows (1) low-mid latitude northern hemisphere CO 2 densities at 170 km vary by a factor of about 2.5, (2) on average, the N 2 /CO 2 increases from 0.042 ± 0.017 at 130 km to 0.12 ± 0.06 at 200 km, and (3) the mean upper atmospheric temperature is 324 ± 22 K for local times near 14:00.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...