ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-29
    Description: Geodetic vertical velocities derived from data as short as 3 yr are often assumed to be representative of linear deformation over past decades to millennia. We use two decades of surface loading deformation predictions due to variations of atmospheric, oceanic and continental water mass to assess the effect on secular velocities estimated from short time-series. The interannual deformation is time-correlated at most locations over the globe, with the level of correlation depending mostly on the chosen continental water model. Using the most conservative loading model and 5-yr-long time-series, we found median vertical velocity errors of 0.5 mm yr−1 over the continents (0.3 mm yr−1 globally), exceeding 1 mm yr−1 in regions around the southern Tropic. Horizontal velocity errors were seven times smaller. Unless an accurate loading model is available, a decade of continuous data is required in these regions to mitigate the impact of the interannual loading deformation on secular velocities.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-14
    Print ISSN: 1080-5370
    Electronic ISSN: 1521-1886
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-13
    Description: Lake Chad, the largest freshwater lake of north-central Africa and one of the largest lakes of Africa, is the relict of a giant Quaternary lake (i.e., Megalake Chad) that developed during the early- to mid-Holocene African Humid Period. Over the drylands of the Sahara Desert and the semi-arid Sahel region, remote sensing (optical satellite imagery and digital elevation models) proved a successful approach to identify the paleo-shorelines of this giant paleo-lake. Here we present the first attempt to estimate the isostatic response of the lithosphere due to Megalake Chad and its impact on the elevation of these paleo-shorelines. For this purpose, we use the open source TABOO software (University of Urbino, Italy) and test four different Earth models, considering different parameters for the lithosphere and the upper mantle, and the spatial distribution of the water mass. We make the simplification of an instantaneous drying-up of Megalake Chad, and compute the readjustment related to this instant unload. Results (i.e., duration, amplitude, and location of the deformation) are then discussed in the light of four key areas of the basin displaying prominent paleo-shoreline morpho-sedimentary features. Whatever the Earth model and simplification involved in the simulations, this work provides a strong first-order evaluation of the impact on hydro-isostasy of Megalake Chad. It demonstrates that a water body similar to this megalake would induce a significant deformation of the lithosphere in the form of a vertical differential uplift at basin-scale reaching up to 16 m in the deepest part of the paleo-lake, and its shorelines would then be deflected from 2 m (southern shorelines) to 12 m (northern shorelines), with a maximum rate of more than 1 cm y−1. As such, any future study related to the paleo-shorelines of Megalake Chad, should integrate such temporal and spatial variation of their elevations.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: This is a report on the activities carried out at the three AuScope VLBI observatories and the Hobart 26-m antenna. In 2012 the three AuScope 12-m antennas at Hobart (Hb), Katherine (Ke), and Yarragadee (Yg) completed their first full year of operations as an array. The Hobart 26-m antenna (Ho) continued to make a contribution to IVS, providing overlap with the Hb time series. In total the AuScope antennas and the Hobart 26 m observed for 146 antenna days in 2012. In this report we also briefly highlight our research activities during 2012 and our plans for 2013.
    Keywords: Astronomy
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 90-93; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-30
    Description: We investigate the impact of viscoelastic tidal deformation of the Moon on the motion of a polar orbiter. The dissipative effects in the Moon’s interior, i.e., tidal phase lags, are modeled as Fourier series sampled at given frequencies associated with linear combinations of Delaunay arguments, the fundamental parameters describing the lunar motion around the Earth and the Sun. We implement the tidal model to evaluate the temporal lunar gravity field and the induced perturbation on the orbiter. We validate the numerical scheme via a frequency analysis of the perturbed orbital motion. We show that, in the case of the Lunar Reconnaissance Orbiter at a low altitude of less than 200 km, the main lunar tides and hence the potential Love numbers around the monthly and some multiple frequencies are dynamically separable. The omission of those effects in practice introduces a position error at the level of a few decimeters within 10 days.
    Description: Published
    Description: 16
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-24
    Description: We use the tidal deformations of the Moon induced by the Earth and the Sun as a tool for studying the inner structure of our satellite. Based on measurements of the degree-two tidal Love numbers $k_2$ and $h_2$ and dissipation coefficients from the GRAIL mission, Lunar Laser Ranging and Laser Altimetry on board of the LRO spacecraft, we perform Monte Carlo samplings for 120,000 possible combinations of thicknesses and viscosities for two classes of the lunar models. The first one includes a uniform core, a low viscosity zone (LVZ) at the core-mantle boundary, a mantle and a crust. The second one has an additional inner core. All models are consistent with the lunar t otal mass as well as its moment of inertia. By comparing predicted and observed parameters for the tidal deformations we find that the existence of an inner core cannot be ruled out. Furthermore, by deducing temperature profiles for the LVZ and an Earth-like mantle, we obtain stringent constraints on the radius (500 $\pm$ 1) km, viscosity, $(4.5 \pm 0.8) \times10^{16}$ Pa$\cdot$s and the density (3400 $\pm$ 10) kg/m$^3$ of the LVZ. We also infer the first estimation for the outer core viscosity, (2.07 ± 1.03) × 10$^{17}$ Pa·s, for tw o different possible structures: a Moon with a 70 km thick outer core and large inner core (290 km radius with a density of 6000 kg/m$^{3}$), and a Moon with a thicker outer core (169 km thick) but a denser and smaller inner core (219 km radius for 8000 kg/m$^{3}$).
    Description: Published
    Description: 115426
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...