ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-02-25
    Description: The stability of the incompressible attachment-line boundary layer has been studied by Hall, Malik & Poll (1984) and more recently by Lin & Malik (1996). These studies, however, ignored the effect of leading-edge curvature. In this paper, we investigate this and leading-edge curvature. The results show that the leading-edge curvature has a stabilizing influence on the attachment-line boundary layer and that the inclusion of curvature in both the mean-flow and stability equations contributes to this stabilizing effect. The effect of curvature can be characterized by the Reynolds number Ra (based on the leading-edge radius). For Ra = 104, the critical Reynolds number R̄ (based on the attachment-line boundary-layer length scale, see §2.2) for the onset of instability is about 637; however, when Ra increases to about 106 the critical Reynolds number approaches the value obtained earlier without curvature effect.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-03-01
    Description: The stability of the incompressible attachment-line boundary layer is studied by solving a partial-differential eigenvalue problem. The basic flow near the leading edge is taken to be the swept Hiemenz flow which represents an exact solution of the Navier-Stokes (N-S) equations. Previous theoretical investigations considered a special class of two-dimensional disturbances in which the chordwise variation of disturbance velocities mimics the basic flow and renders a system of ordinary-differential equations of the Orr-Sommerfeld type. The solution of this sixth-order system by Hall, Malik & Poll (1984) showed that the two-dimensional disturbance is stable provided that the Reynolds number R̄ 〈 583.1. In the present study, the restrictive assumptions on the disturbance field are relaxed to allow for more general solutions. Results of the present analysis indicate that unstable perturbations other than the special symmetric two-dimensional mode referred to above do exist in the attachment-line boundary layer provided R̄ 〉 646. Both symmetric and antisymmetric two- and three-dimensional eigenmodes can be amplified. These unstable modes with the same spanwise wavenumber travel with almost identical phase speeds, but the eigenfunctions show very distinct features. Nevertheless, the symmetric two-dimensional mode always has the highest growth rate and dictates the instability. As far as the special two-dimensional mode is concerned, the present results are in complete agreement with previous investigations. One of the major advantages of the present approach is that it can be extended to study the stability of compressible attachment-line flows where no satisfactory simplified approaches are known to exist.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: An incompressible three-dimensional laminar boundary-layer flow over a swept wing is used as a model to study both the wall-curvature and streamline-curvature effects on the stationary crossflow instability. The basic state is obtained by solving the full Navier-Stokes (N-S) equations numerically. The linear disturbance equations are cast on a fixed, body-intrinsic, curvilinear coordinate system. Those nonparallel terms which contribute mainly to the streamline-curvature effect are retained in the formulation of the disturbance equations and approximated by their local finite difference values. The resulting eigenvalue problem is solved by a Chebyshev collocation method. The present results indicate that the convex wall curvature has a stabilizing effect, whereas the streamline curvature has a destabilizing effect. A validation of these effects with an N-S solution for the linear disturbance flow is provided.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 31; 9; p. 1611-1617.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: The computational modeling of the transition process characteristic of flows over swept wings is discussed. Specifically, the crossflow instability and crossflow/Tollmien-Schlichting wave interactions are analyzed through the numerical solution of the full three-dimensional Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that regular stability theory is insufficient to explain the discrepancies between experiments and between theory and experiment. The leading edge region of a swept wing will be considered in a three-dimensional spatial simulation with random disturbances as the initial conditions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: SAE PAPER 871857
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The effect of including wall and streamline curvature terms in swept-wing boundary-layer stability calculations is studied. The linear disturbance equations are cast on a fixed, body-intrinsic, curvilinear coordinate system. Those nonparallel terms which contribute mainly to the streamline-curvature effect are retained in this formulation and approximated by their local finite-difference values. Convex-wall curvature has a stabilizing effect, while streamline curvature is destabilizing if the curvature exceeds a critical value.
    Keywords: AERODYNAMICS
    Type: SAE PAPER 921987 , ; 9 p.|SAE, Aerotech ''92 Conference; Oct 05, 1992 - Oct 08, 1992; Anaheim, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-24
    Description: Phase effect on the modal interaction of flow instabilities is investigated for laminar-to-turbulent transition in a flat-plate boundary-layer flow. Primary and secondary three-dimensional (3-D) oblique waves at various initial phase differences between these two instability modes. Three numerical methods are used for a systematic approach for the entire transition process, i.e. before the onset of transition well into fully turbulent flow. Floquet analysis predicts the subharmonic resonance where a subharmonic mode locally resonates for a given basic flow composed of the steady laminar flow and the fundamental mode. Because Floquet analysis is limited to the resonating subharmonic mode, nonlinear parabolised stability equation analysis (PSE) is conducted with various phase shifts of the subharmonic mode with respect to the given fundamental mode. The application of PSE offers insights on the modal interaction affected by the phase difference up to the weakly nonlinear stage of transition. Large-eddy simulation (LES) is conducted for a complete transition to turbulent boundary layer because PSE becomes prohibitively expensive in the late nonlinear stage of transition. The modulation of the subharmonic resonance with the initial phase difference leads to a significant delay in the transition location up to $Delta Re_{x, tr} simeq 4imes 10^5$ as predicted by the current LES. Effects of the initial phase difference on the spatial evolution of the modal shape of the subharmonic mode are further investigated. The mechanism of the phase evolution is discussed, based on current numerical results and relevant literature data.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...