ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Weber, Samuel; Beutel, Jan; Da Forno, Reto; Geiger, Alain; Gruber, Stephan; Gsell, Tonio; Hasler, Andreas; Keller, Matthias; Lim, Roman; Limpach, Philippe; Meyer, Matthias; Talzi, Igor; Thiele, Lothar; Tschudin, Christian; Vieli, Andreas; Vonder Mühll, Daniel; Yücel, Mustafa (2019): A decade of detailed observations (2008-2018) in steep bedrock permafrost at Matterhorn Hörnligrat (Zermatt, CH). Earth System Science Data, 11, 1203-1237, https://doi.org/10.5194/essd-11-1203-2019
    Publication Date: 2023-03-08
    Description: The data presented is a unique ten+ year data record obtained from in-situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland at 3500 m a.s.l. during the time period 2008-2018 by the PermaSense project. This data set constitutes the longest, densest and most diverse data record in the history of mountain permafrost research worldwide with 17 different sensor types used at 29 distinct sensor locations consisting of over 114.5 million data points captured over the past decade. By documenting and sharing this data in this form we contribute to making our past research reproducible and facilitate future research based on this data e.g. in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models (code for generating, processing and validating this data set is published on Zenodo https://doi.org/10.5281/zenodo.2542715, 2019). This data set provides primary data products as well as derived data products: GNSS raw data: GNSS observables in the form of daily RINEX 2.11 files GNSS derived data products: Daily positions computed using double-differencing GNSS processing Timelapse images: High-resolution visible light images Timeseries data raw: Per-year and location files or raw sampled data: Weather station, ground temperature, ground resistivity, fracture displacement and inclinometer data Timeseries derived data products: Cleaned and aggregated hourly values of the above Timeseries sanity plots: Standardized plots to obtain a visual overview and check data All data contained in this data set including updates to newer data can also be retrieved using the toolset available at https://doi.org/10.5281/zenodo.2542715, 2019 from the online PermaSense data repository at http://data.permasense.ch.
    Keywords: File content; File format; File name; File size; Long-term monitoring; Matterhorn_Hoernligrat; Matterhorn, Switzerland; Mountain Permafrost; MULT; Multiple investigations; Natural hazards; PermaSense; Uniform resource locator/link to file; Wireless sensors
    Type: Dataset
    Format: text/tab-separated-values, 40 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: This dataset collates data of continuously acquired kinematic observations obtained through in-situ Global Navigation Satellite Systems (GNSS) instruments that have been designed and implemented in a large-scale multi field-site monitoring campaign across the whole Swiss Alps. The landforms covered include rock glaciers, high-alpine steep bedrock bedrock as well as landslide sites, most of which are situated in permafrost areas. The dataset was acquired at 54 different stations situated at locations from 2304 to 4003 meter a.s.l and comprises 229'669 daily positions derived through double-differential GNSS post-processing. Apart from these, the dataset contains down-sampled and cleaned time series of weather station and inclinometer data as well as the full set of GNSS observables in RINEX format. Furthermore the dataset is accompanied by tools for processing and data management in order to facilitate reuse, open alternate usage opportunities and support the life-long living data process with updates. All data contained in this data set including updates to newer data can also be retrieved using the toolset available at https://git.uibk.ac.at/informatik/neslab/public/permasense/permasense_datamgr from the online PermaSense data repository at http://data.permasense.ch.
    Keywords: Binary Object; Binary Object (File Size); Cryosphere; File content; GNSS; kinematics; Landslides; mass movements; MULT; Multiple investigations; Natural hazards; Permafrost; Rockfall; Swiss_Alps
    Type: Dataset
    Format: text/tab-separated-values, 22 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-20
    Description: The data presented is a unique ten+ year data record obtained from in-situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland at 3500 m a.s.l. during the time period 2008-2019 by the PermaSense project. This data set constitutes the longest, densest and most diverse data record in the history of mountain permafrost research worldwide with 17 different sensor types used at 29 distinct sensor locations consisting of over 114.5 million data points captured over the past decade. By documenting and sharing this data in this form we contribute to making our past research reproducible and facilitate future research based on this data e.g. in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models. This data set provides primary data products as well as derived data products: GNSS raw data: GNSS observables in the form of daily RINEX 2.11 files GNSS derived data products: Daily positions computed using double-differencing GNSS processing Timelapse images: High-resolution visible light images Timeseries data raw: Per-year and location files or raw sampled data: Weather station, ground temperature, ground resistivity, fracture displacement and inclinometer data Timeseries derived data products: Cleaned and aggregated hourly values of the above Timeseries sanity plots: Standardized plots to obtain a visual overview and check data All data contained in this data set including updates to newer data can also be retrieved using the toolset available at https://gitlab.ethz.ch/tec/public/permasense/permasense_datamgr from the online PermaSense data repository at http://data.permasense.ch. The version/tag used for the 2020 edition of the Matterhorn data is https://gitlab.ethz.ch/tec/public/permasense/permasense_datamgr/tree/matterhorn_data_2020.
    Keywords: File content; File format; File name; File size; Long-term monitoring; Matterhorn_Hoernligrat; Matterhorn, Switzerland; Mountain Permafrost; MULT; Multiple investigations; Natural hazards; Uniform resource locator/link to file; Wireless sensors
    Type: Dataset
    Format: text/tab-separated-values, 85 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-20
    Description: This dataset collates data of continuously acquired kinematic observations obtained through in-situ Global Navigation Satellite Systems (GNSS) instruments that have been designed and implemented in a large-scale multi field-site monitoring campaign across the whole Swiss Alps. The landforms covered include rock glaciers, high-alpine steep bedrock bedrock as well as landslide sites, most of which are situated in permafrost areas. The dataset was acquired at 54 different stations situated at locations from 2304 to 4003 meter a.s.l and comprises 209'948 daily positions derived through double-differential GNSS post-processing. Apart from these, the dataset contains down-sampled and cleaned time series of weather station and inclinometer data as well as the full set of GNSS observables in RINEX format. Furthermore the dataset is accompanied by tools for processing and data management in order to facilitate reuse, open alternate usage opportunities and support the life-long living data process with updates.
    Keywords: Binary Object; Binary Object (File Size); Cryosphere; File content; GNSS; kinematics; Landslides; mass movements; MULT; Multiple investigations; Natural hazards; Permafrost; Rockfall; Swiss_Alps
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-06
    Description: The PermaSense project is an ongoing interdisciplinary effort between geo-science and engineering disciplines started in 2006 with the goals to make observations possible that previously have not been possible. Specifically the aims are to obtain measurements data in unprecedented quantity and quality based on technological advances. This paper describes a unique ten+ year data record obtained from in-situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt Switzerland at 3500 m a.s.l. Through the utilization of state-of-the-art wireless sensor technology it was possible to obtain more data of higher quality, make this data available in near real-time and tightly monitor and control the running experiments. This data set (DOI: https://doi.org/10.1594/PANGAEA.897640, Weber et al., 2019a) constitutes the longest, densest and most diverse data record in the history of mountain permafrost research worldwide with 17 different sensor types used at 29 distinct sensor locations consisting of over 114.5 million data points captured over a period of ten+ years. By documenting and sharing this data in this form we contribute to making our past research reproducible and facilitate future research based on this data e.g. in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: The PermaSense project is an ongoing interdisciplinary effort between geo-science and engineering disciplines and started in 2006 with the goals of realizing observations that previously have not been possible. Specifically, the aims are to obtain measurements in unprecedented quantity and quality based on technological advances. This paper describes a unique 〉10-year data record obtained from in situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland, at 3500 ma.s.l. Through the utilization of state-of-the-art wireless sensor technology it was possible to obtain more data of higher quality, make these data available in near real time and tightly monitor and control the running experiments. This data set (https://doi.org/10.1594/PANGAEA.897640, Weber et al., 2019a) constitutes the longest, densest and most diverse data record in the history of mountain permafrost research worldwide with 17 different sensor types used at 29 distinct sensor locations consisting of over 114.5 million data points captured over a period of 10 or more years. By documenting and sharing these data in this form we contribute to making our past research reproducible and facilitate future research based on these data, e.g., in the areas of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models. Finally, the cross-validation of four different data types clearly indicates the dominance of thawing-related kinematics.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...