ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 18 (1980), S. 1297-1323 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A mathematical formulation is given which describes the evolution of the number distribution of the molecular weight (MWD) of linear polymer chains that grow in emulsion polymerization systems. The resulting set of coupled ordinary differential equations takes into account the microscopic events of free radical entry, exit, chain annihilation, bimolecular termination (by combination and disproportionation), and chain transfer in a mono- or polydisperse system. Simple analytic solutions are presented for systems in which the number of particles, as well as the average number of free radicals per particle, is constant and in which the rate coefficients are size independent. These solutions indicate that compartmentalization of the free radicals in the latex particles results in a significant increase in the polydispersity of the polymer produced by emulsion polymerization, compared with that in bulk systems. The theory shows that significant mechanistic information may be obtained from experimental MWDs and that, in principle, experimental conditions may be prescribed to grow a desired MWD. The MWDs are presented in a novel manner that facilitates the comparison of theory with experiment.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 21 (1983), S. 269-291 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A new method is presented that provides experimental information which is qualitatively and quantitatively sensitive to assumptions made as to the mechanisms of free radical entry and of latex particle formation in emulsion polymerization systems. The method consists of (1) obtaining (by electron microscopy) the full particle-size distributions (PSDs) at several different times soon after the cessation of latex particle nucleation, (2) using these PSDs to determine the volume dependences of the various rate coefficients governing particle growth by fitting the data to the appropriate evolution equations, and (3) employing these empirical rate coefficients to find that time dependence of the nucleation rate which fits the early-time PSD (again using the evolution equations). This method is quite sensitive to mechanistic assumptions: for example, one is able to determine whether or not the nucleation rate is an increasing or decreasing function of time. The technique is applied to a styrene nucleation system employing sodium dodecyl sulfate as surfactant at well above the critical micelle conventration. The data cannot be fitted even qualitatively by a simple one-step nucleation mechanis, whether it involes micellar entry or homogeneous nucleation. It is found, on the other hand, that the results can be accurately fitted by assuming that coagulation events between primary colloidal particles, perhaps formed by homogeneous nucleation, dominate both the nucleation process and the entry of free radicals into mature latex particles. In addition, the data indicate that the rate of free radical entry into the latex particles decreases with increasing particle size, at least for particles of unswollen radius less than ca. 40 nm.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 19 (1981), S. 925-938 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Data are presented on the time evolution of particle-size distributions (PSDs) in seeded and ab initio styrene emulsion polymerization systems. Initiation was by chemical reagent (potassium persulfate) or γ-radiation. The unswollen PSDs at various times during interval II of the polymerization were obtained by direct measurement of calibrated electron micrographs. Experimental results were fitted with the equations that describe the time evolution of an initial PSD. Analytic solutions to these equations that allow for entry, exit, and propagation of free radicals were obtained. The values of the rate coefficients for these processes used to fit the experimental data were in excellent agreement with those obtained from dilatometric kinetics experiments.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 15 (1977), S. 1957-1971 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The traditional theoretical approach to emulsion polymerization is extended to include effects due to the size of each polymer latex particle. Specific account can thus be taken of the particle size distribution in considering the growth of the colloid. Coupled partial differential equations are derived to describe the system and shown to reduce to the conventional Smith-Ewart equations under certain limits. Solutions are presented for simple models for the emulsion polymerization of styrene and vinyl acetate.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 21 (1983), S. 985-997 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The results are reported of studies on the kinetics and the time evolution of the particle size distribution in seeded styrene emulsion polymerization systems wherein the seed latex particles were highly swollen with monomer as a result of prior swelling by dodecane. Conditions were such that no new latex particles were formed nor was a significant number of monomer droplets present (“Interval III”). The data were fitted to obtain values for the rate coefficients for entry and exit (desorption) of free radicals. It was found that, during the early part of the polymerization (when the polymer:monomer ratio in the latex particles is considerably less then in an equivalent emulsion polymerization system without dodecane), the entry rate coefficient was much smaller than that measured in systems without dodecane. This effect is consistent with an entry mechanism wherein entering free radicals must displace surfactant molecules from the latex particles.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 18 (1980), S. 711-716 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...