ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 21 (2000), S. 207-215 
    ISSN: 1572-9567
    Keywords: calorific intensity ; hot probe ; organ or tissue of a living body ; specific heat ; thermal conductivity ; thermal diffusivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A new method was developed to determine simultaneously the thermal conductivity, thermal diffusivity, specific heat, and calorific intensity of the organ or tissue of a living body either in vivo or in vitro with a thin hot probe. By using the method, the thermophysical properties and calorific intensities of a human palm and in vivo liver and a kidney, heart, brain, and foreleg and hindleg muscles of an anesthetized canine were measured. It is concluded that there are no significant differences in the thermophysical properties of organ or tissue of a living body either in vivo or in vitro. The measured thermophysical properties are in good agreement with those reported in the literature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-13
    Description: Author(s): J. J. Ying, J. C. Liang, X. G. Luo, X. F. Wang, Y. J. Yan, M. Zhang, A. F. Wang, Z. J. Xiang, G. J. Ye, P. Cheng, and X. H. Chen We measured the transport properties and susceptibility of single-crystal Ca 1− x La x Fe 2 As 2 ( x =0 , 0.05, 0.1, 0.15, 0.19, and 0.25). Large in-plane resistivity anisotropy similar to that in Co-doped 122 iron pnictides is observed although no transition metals were introduced in the FeAs plane. The in-pl... [Phys. Rev. B 85, 144514] Published Thu Apr 12, 2012
    Keywords: Superfluidity and superconductivity
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-12-01
    Print ISSN: 0031-9155
    Electronic ISSN: 1361-6560
    Topics: Biology , Medicine , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1994-11-01
    Print ISSN: 0957-0233
    Electronic ISSN: 1361-6501
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-05-01
    Print ISSN: 0017-9310
    Electronic ISSN: 1879-2189
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The purpose of this study was to determine if human parathyroid hormone-(1-38) (PTH) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses (PTM) of female rats. The right hindlimbs of six-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization (RHLI), the rats were subcutaneously injected with 200 microgram hPTH(1-38)/kg/day for 15 (short-term) or 75 (longer-term) days. Static bone histomorphometry was performed on the primary spongiosa, while both static and dynamic histomorphometry were performed on the secondary spongiosa of the right PTM. Immobilization for 30 days without treatment decreased trabecular bone area, number and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate (BFR/TV) in the secondary spongios. These changes reached a new steady state thereafter. Treatment with 200 microgram hPTH(1-38)/kg/day for 15 days, beginning at 30 days post immobilization (IM), significantly increased trabecular bone area, thickness and number in both primary and secondary spongiosa despite continuous IM when compared to the age-related and IM controls. The short-term (15 days) PTH treatment significantly increased labeling perimeter, mineral apposition rate and BFR/TV in the secondary spongiosa and stimulated longitudinal bone growth as compared to the age-related and IM controls. PTH treatment for longer-term (75 days) further increased trabecular bone area, thickness and number as compared to aging and IM controls and short-term (15 days) PTH treated groups. The bone formation indices in the secondary spongiosa of these longer-term treated rats were lower than that of short-term (15 days) PTH treated group, but they were still higher than those of IM and age-related controls. Our findings indicate that PTH treatment stimulates cancellous bone formation, restores and adds extra cancellous bone to the established, disuse-osteopenic proximal tibial metaphysis of continuously RHLI female rats. These results suggest that PTH may be a useful agent in treatment disuse-induced osteoporosis in humans.
    Keywords: AEROSPACE MEDICINE
    Type: NASA-CR-197709 , NAS 1.26:197709
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The purpose of this study was to determine if human parathyroid hormone-(1-38) (hPTH(1-38)) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses of female rats. The right hindlimbs of 6-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization, the rats were subcutaneously injected with 200 micrograms hPTH(1-38)/kg/day for 15 days (short-term treatment) or 75 days (longer-term treatment). Static bone histomorphometry was performed on the primary spongiosa, and both static and dynamic histomorphometry were performed on the secondary spongiosa of the right proximal tibial metaphyses. Immobilization for 30 days without treatment decreased trabecular bone area, number, and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate in the secondary spongiosa. These changes reached a new steady state thereafter. Treatment with 200 micrograms hPTH(1-38)/kg/day for 15 days, beginning 30 days after immobilization, significantly increased trabecular bone area, thickness, and number in both primary and secondary spongiosa despite continuous immobilization when compared with controls. The short-term PTH treatment (15 days) significantly increased labeling perimeter, mineral apposition rate, and tissue referent-bone formation rate in the secondary spongiosa and stimulated longitudinal bone growth as compared with the controls. Longer PTH treatment (75 days) further increased trabecular bone area, thickness, and number as compared with controls and groups given short-term PTH treatment (15 days). The bone formation indices in the secondary spongiosa of the longer-term treated rats were lower than those of the short-term treated group, but they were still higher than those of controls. Our findings indicate that PTH treatment stimulates cancellous bone formation, and restores and adds extra cancellous bone to the established, disuse-osteopenic proximal tibial metaphysis of female rats with continuously immobilized right hindlimbs. These results suggest that PTH may be useful in treating disuse-induced osteoporosis in humans.
    Keywords: Aerospace Medicine
    Type: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (ISSN 0884-0431); 10; 3; 496-505
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We have determined the differences in the effects of continual prostaglandin E(sub 2) (PGE(sub 2) treatment in aged (non-growing) and young (growing) cancellous bone sites in 7-month-old Sprague-Dawley rats. The sites involved are the aged distal tibial metaphysis (DTM) with a closed epiphysis and the young proximal tibial metaphysis (PTM) with a slow growing, open epiphysis. The study involved rats treated with 0, 1, 3 or 6 mg PGE(sub 2)/kg/d for 60, 120 and 180 days. Static and dynamic histomorphometry of percent trabecular area, and tissue-referent bone formation rate (BFR/TV) were determined in both DTM and PTM. In pretreatment controls, the secondary spongiosa of the two metaphyses contain the same amount of cancellous bone (11% in DTM vs. 13% in PTM), but markedly less bone formation in DTM (0.6%/y in DTM vs. 41.5%/y in PTM). After 60 days of 6 mg PGE(sub 2)/kg/d treatment, %Tb.Ar was increased 607% in DTM and 199% in PTM, BFR/TV was increased to nearly 14 fold in DTM and only 5 fold in PTM. These results indicated the aged metaphysis of the DTM was much more responsive to PGE(sub 2) treatment than young, growing metaphysis of the PTM. The results of 120 and 180 days treatment did not significantly differ from 60 days treatment in both sites, indicating that the effect of continuous daily PGE2 treatment were in equilibrium after 60 days. We concluded that aged metaphysis was much more responsive to PGE(sub 2) treatment than young growing metaphysis.
    Keywords: Life Sciences (General)
    Type: NASA-CR-204211 , NAS 1.26:204211 , Bone (ISSN 8756-3282); 14; 481-485
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The purpose of this study was to determine whether prostaglandin E2 (PGE2) can restore cancellous bone mass and architecture to osteopenic, continuously immobilized (IM), proximal tibial metaphysis (PTM) in female rats. The right hindlimb of three and one-half-month-old Sprague-Dawley female rats were immobilized by right hindlimb immobilization (RHLI) in which the right hindlimb was underloaded and the contralateral left limb was overloaded during ambulation. After 4 or 12 weeks of RHLI, the rats were treated with 3 or 6 mg PGE2/kg/day and RHLI for 8 or 16 weeks. Bone histomorphometry was performed on microradiographs of PTM. Immobilization (IM) induced a transient cancellous bone loss and decreased trabecular thickness, number and node density, and increased free end density that established a new steady state after 4 weeks of IM. Three or 6 mg PGE2/kg/d for 8 weeks beginning at 4 or 12 weeks of IM completely restored cancellous bone mass (+127 to +188 percent) and structure to the age-related control levels in spite of continuous IM. Another 8 weeks of treatment maintained bone mass and architecture at these levels. No differences in cancellous bone mass and architecture were found between the overloaded PTM or RHLI rats and the age-related controls. However, 3 and 6 mg/kg/d of PGE2 treatment started at 4 or 12 weeks for 8 weeks significantly increased cancellous bone mass in the overloaded PTM (+45 to +74% of untreated controls), and another 8 weeks of treatment maintained bone mass at these levels. Our findings indicate that daily 3 or 6 mg PGE2/kg/d treatment restores and maintains PTM cancellous bone mass in continuously immobilized (right) tibiae, and adds and maintains extra bone to slightly overloaded PTM cancellous bone in female rats.
    Keywords: Life Sciences (General)
    Type: NASA-CR-202477 , NAS 1.26:202477 , Bone (ISSN 8756-3282); 14; 283-288
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: We have determined the differences in the effects of continual prostaglandin E2 (PGE2) treatment in aged (non-growing) and young (growing) cancellous bone sites in 7 month-old Sprague-Dawley rats. The sites involved are the aged Distal Tibial Metaphysis (DTM) with a closed epiphysis and the young Proximal Tibial Metaphysis (PTM) with a slow growing, open epiphysis. The study involved rats treated with 0, 1, 3 or 6 mg PGE2/kg/d for 60, 120 and 180 days. Static and dynamic histomorphometty of percent trabecular area, and tissue-referent bone formation rate (BFR/TV) were determined in both DTM and PTM. In pretreatment controls, the secondary spongiosa of the two metaphyses contain the same amount of cancellous bone (11% in DTM vs. 13% in PTM), but markedly less bone formation in DTM (0.6%/y in DTM vs. 41.5%/y in PTM). After 60 days of 6 mg PGE2/kg/d treatment, %Tb.Ar was increased 607% in DTM and 199% in PTM, BFR/TV was increased to nearly 14 fold in DTM and only 5 fold in PTM. These results indicated the aged metaphysis of the DTM was much more responsive to PGE2 treatment than young, growing metaphysis of the PTM. The results of 120 and 180 days treatment did not significantly differ from 60 days treatment in both sites, indicating that the effect of continuous daily PGE2 treatment were in equilibrium after 60 days. We concluded that aged metaphysis was much more responsive to PGE2 treatment than young growing metaphysis.
    Keywords: Life Sciences (General)
    Type: NASA-CR-202476 , NAS 1.26:202476 , Bone (ISSN 8756-3282); 14; 481-485
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...