ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Recent studies of a proposed low cross-range straight-wing space shuttle orbiter have shown that the sonic boom created during reentry may be objectionable, particularly at low supersonic Mach number. Because of this, additional tests have been conducted to determine the sonic-boom overpressure for a blended wing-body shape proposed for use as a high cross-range shuttle orbiter. Two mission profiles, in which a constant angle of attack was held during the supersonic portion of the flight, were studied. In one case the angle of attack was 60 degrees; in the other 25 degrees. The sonic-boom pressure signatures were measured in a wind tunnel and used to estimate overpressures for both missions. A technique for alleviating the boom is indicated.
    Keywords: ACOUSTICS
    Type: NASA-TM-108238 , NAS 1.15:108238
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: It is desired that the Space Shuttle Orbiter be capable of landing at airports equipped to handle present-day jet transports. Since the majority of such airports are located near heavily populated areas, an investigation has been undertaken to determine whether or not the sonic boom generated during reentry of Space Shuttle Orbiters is potentially a serious problem. The investigation was concerned with the low cross-range orbiter and reentry concept proposed by Faget of the Manned Spacecraft Center (MSC). This report describes the approach used and presents the results obtained to date.
    Keywords: ACOUSTICS
    Type: NASA-TM-108237 , NAS 1.15:108237
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Type: NACA-RM-A51E04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Type: NACA-RM-A55C02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Type: NACA-RM-A55L14a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: Measurements were made to determine the effects of sting-support diameter on the base pressures of an elliptic cone with ratio of cross-section thickness to width of 1/3 and a plan-form, semi-apex angle of 15 deg. The investigation was made for model angles of attack from -2 deg to +20 deg at Mach numbers from 0.60 to 1.40, and for a constant Reynolds number of 1.4 million, based on the length of the model. The results indicated that the sting interference decreased the base axial-force coefficients by substantial amounts up to a maximum of about one-third the value of the coefficient for no sting interference. There was no practical diameter of the sting for which the effects of the sting on the base pressures would be negligible throughout the Mach number and angle-of-attack ranges of the investigation.
    Keywords: Aerodynamics
    Type: NASA-TN-D-354 , A-432
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: An analysis has been made of atmosphere entries for which the vehicle lift-drag ratio was modulated to maintain specified maximum decelerations and/or maximum deceleration rates. The part of the vehicle drag polar used during modulation was from maximum lift coefficient to minimum drag coefficient. The entries were at parabolic velocity and the vehicle maximum lift-drag ratio was 0.5. Two-dimensional trajectory calculations were made for a nonrotating, spherical earth with an exponential atmosphere. The results of the analysis indicate that for a given initial flight-path angle, modulation generally resulted in a reduction of the maximum deceleration to 60 percent of the unmodulated value or a reduction of maximum deceleration rate to less than 50 percent of the unmodulated rate. These results were equivalent, for a maximum deceleration of 10 g, to lowering the undershoot boundary 24 miles with a resulting decrease in total convective heating to the stagnation point of 22 percent. However, the maximum convective heating rate was increased 18 percent; the maximum radiative heating rate and total radiative heating were each increased about 10 percent.
    Keywords: Aerodynamics
    Type: NASA-TN-D-1145 , A-564
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: The concepts of the supersonic area rule and the moment-of-area rule are combined to develop a new method for calculating zero-lift wave drag which is amenable to the use of ordinary desk calculators. The total zero-lift wave drag of a configuration is calculated by the new method as the sum of the wave drag of each component alone plus the interference between components. In calculating the separate contributions each component or pair of components is analyzed over the smallest allowable length in order to improve the convergence of the series expression for the wave drag. The accuracy of the present method is evaluated by comparing the total zero-lift wave-drag solutions for several simplified configurations obtained by the present method with solutions given by slender-body and linearized theory. The accuracy and computational time required by the present method are also evaluated relative to the supersonic area rule and the moment-of-area rule. The results of the evaluation indicate that total zero-lift wave-drag solutions for simplified configurations can be obtained by the present method which differ from solutions given by slender-body and linearized theory by less than 6 percent. This accuracy for simplified configurations was obtained from only nine terms of the series expression for the wave drag as a result of calculating the total zero-lift wave drag by parts. For the same number of terms these results represent an accuracy greater than that for solutions obtained by either of the two methods upon which the present method is based, except in a few isolated cases. For the excepted cases, solutions by the present method and the supersonic area rule are identical. Solutions by the present method are obtained in one fifth the computing time required by the supersonic area rule. This difference in computing time of course would be substantially reduced if the complete procedures for both methods were programmed on electronic computing machines.
    Keywords: Aerodynamics
    Type: NASA-MEMO-4-19-59A , A-158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-15
    Description: The method developed in NASA TN D-319 for studying the atmosphere entry of vehicles with varying aerodynamic forces has been applied to obtain a closed-form solution for the motion, heating, range, and variation of the vehicle parameter m/C(D)A for nonlifting entries during which the rate of increase of deceleration is limited. The solution is applicable to vehicles of arbitrary weight, size, and shape, and to arbitrary atmospheres. Results have been obtained for entries into the earth's atmosphere at escape velocity during which the maximum deceleration and the rate at which deceleration increases were limited. A comparison of these results with those of NASA TN D-319, in which only the maximum deceleration was limited, indicates that for a given corridor depth, limiting the rate of increase of deceleration and the maximum deceleration requires an increase in the magnitude of the change in M/C(D)A and results in increases in maximum heating rate, total heat absorbed at the stagnation point, and range.
    Keywords: Aerodynamics
    Type: NASA-TN-D-1037 , A502
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-15
    Description: The dimensionless, transformed, nonlinear differential equation developed in NASA TR R-11 for describing the approximate motion and heating during entry into planetary atmospheres for constant aerodynamic coefficients and vehicle shape has been modified to include entries during which the aerodynamic coefficients and the vehicle shape are varied. The generality of the application of the original equation to vehicles of arbitrary weight, size, and shape and to arbitrary atmospheres is retained. A closed-form solution for the motion, heating, and the variation of drag loading parameter m/C(D)A has been obtained for the case of constant maximum resultant deceleration during nonlifting entries. This solution requires certain simplifying assumptions which do not compromise the accuracy of the results. The closed-form solution has been used to determine the variation of m/C(D)A required to reduce peak decelerations and to broaden the corridor for nonlifting entry into the earth's atmosphere at escape velocity. The attendant heating penalty is also studied.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA-TN-D-319
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...