ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: coenzyme Q ; ubiquinone-orientation ; ubiquinone-localization ; linear dichroism ; model membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary A general approach is developed to interpret linear dichroism (LD) spectra of ubiquinones (Q n) in host bilayers. Information is reported in terms of guest-host mutual orientation and localization. The overall orientational anisotropy of guest ubiquinone molecules is described by a basic set of limiting orientation/localization modes. Assignments of the UV transitions of the ubiquinone chromophore were obtained by the liquid crystal-linear dichroism technique and molecular orbital (CNDO/S) calculations. The LD spectra of Q n in the bilayers provided by the lyotropic nematic mesophase exhibited by water solutions of potassium laurate and decanol were interpreted on the basis of the above assignments. The resulting experimental evidence showed a multisite distribution in the host bilayer for the aromatic heads of all the investigated Q n derivatives except Q0. The orientational distribution suggested by the LD spectra fits the solubilization model recently proposed by G. Lenaz [J. Membrane Biol. (1988) 104:193–209] for ubiquinone in lipid membranes. Within this model Q n molecules are located in the midplane and their headgroups oscillate transversally across the membrane. Q 0 instead has a single site location, close to the polar bilayer interface. Experimental evidence that the headgroup carbonyls tend to grasp the polar interface of the host bilayer was also obtained. Orientation and location distributions of Q n guest molecules are therefore likely to result from the tendency of their aromatic heads to grasp the polar heads of the host bilayer and from the concurrent tendency of their chains to settle into the hydrocarbon host interior.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 104 (1988), S. 193-209 
    ISSN: 1432-1424
    Keywords: electron transfer ; mitochondria ; respiratory complexes ; respiratory chain ; organization ; ubiquinone ; diffusion ; cytochromec ; diffusion ; diffusion-limited
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 195 (1972), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4919
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Summary The phospholipid requirement of membrane-bound enzymes may depend on several reasons. In our laboratory we have investigated lipids (1) as a bidimensional medium required for the movement of Coenzyme Q, a lipid-soluble cofactor of the mitochondrial respiratory chain, and (2) as a hydrophobic environment necessary to impose the proper conformation to membrane-bound enzymic proteins. We have found that Coenzyme Q, once reduced by NADH dehydrogenase, must cross the inner mitochondrial membrane; only quinones having long isoprenoid side chains can easily cross phospholipid bilayers, and this is the reason why a short chain quinone such as CoQ-3 inhibits NADH oxidation. The incapability of short quinones to cross lipid bilayers is due to their disposition in the lipid bilayer, stacked within the phospholipids. The conformational role of lipids has been investigated indirectly observing the kinetics of membrane-bound enzymes, e.g. the mitochondrial ATPase, and directly by circular dichroism. Lipid removal or lipid perturbation with organic solvents induce a decrease of α-helical content in mitochondrial proteins, and give rise to a series of kinetic changes in ATPase, including uncompetitive inhibition, increased activation energy, and loss of cooperativity in oligomycin inhibition. The recognition of a conformational role of lipids has allowed us to postulate a working hypothesis for the mechanism of action of general anesthetics. Such drugs have been found by us, by means of spin labels and fluorescent probes, to disrupt lipid protein interactions in several membranes, including synaptic membranes. The loosening of such interactions is believed to induce conformational changes, which will alter ion transport systems necessary to the propagation of neural impulses. Conformational changes induced by anesthetics have been found by us both directly by circular dichroism and indirectly by enzyme kinetics. The conformational effect of anesthetics is not directly exerted on the porteins but is mediated through the lipids. In agreement with this hypothesis we have found that membrane-bound acetylcholinesterase is inhibited by anesthetics, whereas the solubilized enzyme is not inhibited. However, binding of the solubilized enzyme to phospholipids restores anesthetic inhibition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-6881
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract We have studied the effect of general anesthetics on the mobility of two stearic acid spin labels (5-doxyl stearic acid and 16-doxyl stearic acid) in bovine heart mitochondria and in phospholipid vesicles made from either mitochondrial lipids or commercial soybean phospholipids. The general anesthetics used include nonpolar compounds (alcohols, halothane, pentrane, diethyl ether, chloroform) and the amphipathic compound, ketamine. All anesthetics tested increase the mobility of the spin labels in phospholipid vesicles to a limited extent up to a concentration where the ESR spectra become those of free spin labels. On the other hand, anesthetics have a pronounced effect on mitochondrial membranes at concentrations as low as those known to produce general anesthesia; the effect is lower near the bilayer surface (5-doxyl stearic acid) and very strong in the bilayer core (16-doxyl stearic acid). The effects of anesthetics are mimicked by the detergent, Triton X-100. We suggest that the discrepancy between the action of anesthetics in mobilizing the spin labels in lipid vesicles and in membranes results from labilization of lipid protein interactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 18 (1986), S. 369-401 
    ISSN: 1573-6881
    Keywords: Ubiquinone ; diffusion ; diffusion control ; electron transfer ; mitochondria ; fluorescence quenching ; respiratory chain ; membrane viscosity ; NADH-ubiquinone oxidoreductase ; ubiquinol-cytochromec oxidoreductase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The different possible dispositions of the electron transfer components in electron transfer chains are discussed: (a) random distribution of complexes and ubiquinone with diffusion-controlled collisions of ubiquinone with the complexes, (b) random distribution as above, but with ubiquinone diffusion not rate-limiting, (c) diffusion and collision of protein complexes carrying bound ubiquinone, and (d) solid-state assembly. Discrimination among these possibilities requires knowledge of the mobility of the electron transfer chain components. The collisional frequency of ubiquinone-10 with the fluorescent probe 12-(9-anthroyl)stearate, investigated by fluorescence quenching, is 2.3 × 109 M−1 sec−1 corresponding to a diffusion coefficient in the range of 10−6 cm2/sec (Fato, R., Battino, M., Degli Esposti, M., Parenti Castelli, G., and Lenaz, G.,Biochemistry,25, 3378–3390, 1986); the long-range diffusion of a short-chain polar Q derivative measured by fluorescence photobleaching recovery (FRAP) (Gupte, S., Wu, E. S., Höchli, L., Höchli, M., Jacobson, K., Sowers, A. E., and Hackenbrock, C. R.,Proc. Natl. Acad. Sci. USA 81, 2606–2610, 1984) is 3×10−9 cm2/sec. The discrepancy between these results is carefully scrutinized, and is mainly ascribed to the differences in diffusion ranges measured by the two techniques; it is proposed that short-range diffusion, measured by fluorescence quenching, is more meaningful for electron transfer than long-range diffusion measured by FRAP, or microcollisions, which are not sensed by either method. Calculation of the distances traveled by random walk of ubiquinone in the membrane allows a large excess of collisions per turnover of the respiratory chain. Moreover, the second-order rate constants of NADH-ubiquinone reductase and ubiquinol-cytochromec reductase are at least three orders of magnitude lower than the second-order collisional constant calculated from the diffusion of ubiquinone. The activation energies of either the above activities or integrated electron transfer (NADH-cytochromec reductase) are well above that for diffusion (found to be ca. 1 kcal/mol). Cholesterol incorporation in liposomes, increasing bilayer viscosity, lowers the diffusion coefficients of ubiquinone but not ubiquinol-cytochromec reductase or succinate-cytochromec reductase activities. The decrease of activity by ubiquinone dilution in the membrane is explained by its concentration falling below theK m of the partner enzymes. It is calculated that ubiquinone diffusion is not rate-limiting, favoring a random model of the respiratory chain organization. It is not possible, however, to exclude solid-state assemblies if the rate of dissociation and association of ubiquinone is faster than the turnover of electron transfer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 19 (1987), S. 705-718 
    ISSN: 1573-6881
    Keywords: Human fibroblasts ; plasma membrane potential ; mitochondrial membrane potential ; tetraphenylphosphonium ion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The lipophilic cation tetraphenylphosphonium (TPP+) is accumulated by human skin fibroblasts across both the plasma and mitochondrial membranes. We show here that TPP+ uptake is indeed greatly decreased under conditions leading to de-energization of mitochondria. The TPP+ accumulation in the presence of the proton ionophore FCCP has been used for determination of the plasma membrane potential across the plasma membrane, after correction for potential-independent binding of TPP+ to cellular components. Following this procedure, a value of 75 mV has been obtained. Through the amount of TPP+ released by FCCP treatment, an estimate of thein situ mitochondrial membrane potential has been made. Furthermore, we report that the mitochondrial component of TPP+ accumulation decreases with aging of fibroblast cultures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 2 (1971), S. 119-127 
    ISSN: 1573-6881
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Monohydric alcohols extract phospholipids from beef heart mitochondria with an efficacy which depends on the chain length of the alcohol. Succinoxidase and ATPase activities are affected by alcohols in a similar way; alcohols make ATPase oligomycin-insensitive at concentrations decreasing with the chain length of the alcohol. Oxidative phosphorylation is inhibited at much lower concentrations of alcohols. Hydrophobic boods must play a role in the organization of all of the activities considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-6881
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Succinoxidase activity in lipid-depleted mitochondria was not restored efficiently by mixed myelin phospholipids at difference with the natural mitochondrial phospholipids, yeast phospholipids, and Asolectin. Since similar differences in activity were present between pure phosphatidyl-ethanolamine fractions separated from myelin phospholipids and Asolectin, they should be due to the different fatty acid composition of the phospholipids. In contrast with the differentability in restoration of succionoxidase, all the phospholipids studied were bound to the lipid-depleted membranes to similar extents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...