ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-11
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-23
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-06
    Description: This paper discusses the pre-launch spectral characterization of the Operational Land Imager (OLI) at the component, assembly and instrument levels and relates results of those measurements to artifacts observed in the on-orbit imagery. It concludes that the types of artifacts observed and their magnitudes are consistent with the results of the pre-launch characterizations. The OLI in-band response was characterized both at the integrated instrument level for a sampling of detectors and by an analytical stack-up of component measurements. The out-of-band response was characterized using a combination of Focal Plane Module (FPM) level measurements and optical component level measurements due to better sensitivity. One of the challenges of a pushbroom design is to match the spectral responses for all detectors so that images can be flat-fielded regardless of the spectral nature of the targets in the imagery. Spectral variability can induce striping (detector-to-detector variation), banding (FPM-to-FPM variation) and other artifacts in the final data products. Analyses of the measured spectral response showed that the maximum discontinuity between FPMs due to spectral filter differences is 0.35% for selected targets for all bands except for Cirrus, where there is almost no signal. The average discontinuity between FPMs is 0.12% for the same targets. These results were expected and are in accordance with the OLI requirements. Pre-launch testing identified low levels (within requirements) of spectral crosstalk amongst the three HgCdTe (Cirrus, SWIR1 and SWIR2) bands of the OLI and on-orbit data confirms this crosstalk in the imagery. Further post-launch analyses and simulations revealed that the strongest crosstalk effect is from the SWIR1 band to the Cirrus band; about 0.2% of SWIR1 signal leaks into the Cirrus. Though the total crosstalk signal is only a few counts, it is evident in some scenes when the in-band cirrus signal is very weak. In moist cirrus-free atmospheres and over typical land surfaces, at least 30% of the cirrus signal was due to the SWIR1 band. In the SWIR1 and SWIR2 bands, crosstalk accounts for no more than 0.15% of the total signal.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: GSFC-E-DAA-TN16140 , Remote Sensing (e-ISSN 2072-4292); 6; 10; 10,231-10,251
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Landsat Data Continuity Mission (LDCM) is being developed by NASA and USGS and is currently planned for launch in January 2013 [1]. Once on-orbit and checked out, it will be operated by USGS and officially named Landsat-8. Two sensors will be on LDCM: the Operational Land Imager (OLI), which has been built and delivered by Ball Aerospace & Technology Corp (BATC) and the Thermal Infrared Sensor (TIRS)[2], currently being built and tested at Goddard Space Flight Center (GSFC) with a planned delivery of Winter 2012. The OLI covers the Visible, Near-IR (NIR) and Short-Wave Infrared (SWIR) parts of the spectrum; TIRS covers the Thermal Infrared (TIR). This paper discusses only the OLI instrument and its pre-launch characterization; a companion paper covers TIRS.
    Keywords: Instrumentation and Photography
    Type: GSFC.CPR.6924.2012 , IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2012; Jul 22, 2012 - Jul 27, 2012; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Operational Land Imager(OLI) will be the main instrument on Landsat-8 when it launches in 2012. OLI represents a generational change from heritage Landsat instruments in its design but must maintain data continuity with the 30+ year Landsat data archive. As a result, OLI has undergone a stringent calibration and characterization campaign to ensure its characteristics are understood and consistent with past instruments. This paper presents an overview of the OLI design, its major differences from previous Landsat instruments, and a summary of its expected performance.
    Keywords: Instrumentation and Photography
    Type: GSFC.OVPR.5064.2011 , GSFC.ABS.5065.2011 , GSFC.CPR.6591.2012 , CALCON Technical Conference; Aug 27, 2012 - Aug 30, 2012; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The primary payload for the Landsat Data Continuity Mission (LDCM) is the Operational Land Imager (OLI), being built by Ball Aerospace and Technologies, under contract to NASA. The OLI has spectral bands similar to the Landsat-7 ETM+, minus the thermal band and with two new bands, a 443 nm band and 1375 nm cirrus detection band. On-board calibration systems include two solar diffusers (routine and pristine), a shutter and three sets of internal lamps (routine, backup and pristine). Being a pushbroom opposed to a whiskbroom design of ETM+, the system poses new challenges for characterization and calibration, chief among them being the large focal plane with 75000+ detectors. A comprehensive characterization and calibration plan is in place for the instrument and the data throughout the mission including Ball, NASA and the United States Geological Survey, which will take over operations of LDCM after on-orbit commissioning. Driving radiometric calibration requirements for OLI data include radiance calibration to 5% uncertainty (1 q); reflectance calibration to 3% uncertainty (1 q) and relative (detector-to-detector) calibration to 0.5% (J (r). Driving geometric calibration requirements for OLI include bandto- band registration of 4.5 meters (90% confidence), absolute geodetic accuracy of 65 meters (90% CE) and relative geodetic accuracy of 25 meters (90% CE). Key spectral, spatial and radiometric characterization of the OLI will occur in thermal vacuum at Ball Aerospace. During commissioning the OLI will be characterized and calibrated using celestial (sun, moon, stars) sources and terrestrial sources. The USGS EROS ground processing system will incorporate an image assessment system similar to Landsat-7 for characterization and calibration. This system will have the added benefit that characterization data will be extracted as part of the normal image data processing, so that the characterization data available will be significantly larger than for Landsat-7 ETM+.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: The 17th William T. Pecora Memorial Remote Sensing Symposium; Nov 18, 2008 - Nov 20, 2008; Colorado; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...