ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary When cultivated in chemically defined medium, Streptomyces clavuligerus produces cephamycin C. This biosynthesis is greatly inhibited when the bacteria develop rapidly in batch culture. The decrease in cephamycin C biosynthesis is paralleled by a decrease in expandase biosynthesis. This negative effect can be observed whatever the limiting growth substrate (glycerol, ammonium or phosphate), a phenomenon which was confirmed when S. clavuligerus was cultivated in a chemostat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 28 (1988), S. 44-51 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Streptomyces clavuligerus produces cephamycin C while growing on chemically defined basal medium. Cephamycin C production takes place during the exponential growth phase and is accompanied by vigorous activity of the “cephamycin C synthetase” system and of expandase. An excessive amount of glycerol decreases cephamycin C production. Its negative effect appears to be greatest when it is added in the first phase of fermentation either alone or in the presence of starch. Starch excess also reduces cephamycin C production, but its effect is slight compared with glycerol. Glycerol hinders cephamycin C production by the repression of the cephamycin C synthetase system and particularly expandase biosynthesis. Starch and glycerol inhibit neither cephamycin C synthetase nor expandase activities. However, the phosphorylated intermediates of the glycolytic pathway, glucose 6-phosphate and fructose 1,6-phosphate, strongly inhibit expandase activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 37 (1992), S. 382-387 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The effect of ammonium on growth and spiramycin biosynthesis in Streptomyces ambofaciens cultured on a chemically defined medium was studied. Spiramycin biosynthesis was better in the presence of valine and isoleucine than in the presence of ammonium. This production was reduced in the presence of excess ammonium (100 mm). The addition of catabolic intermediates of valine and isoleucine reserved the negative effect of ammonium. Valine dehydrogenase (VDH), the enzyme responsible for valine, leucine and isoleucine catabolism, was repressed when excess ammonium was present in the medium. This repression was approximately 25% when the ammonium concentration was increased from 50 to 100 mm. In addition to the repression of VDH biosynthesis, ammonium inhibited the activity of this enzyme. This inhibition was 45 and 65% in the presence of 50 and 100 mm ammonium, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 26 (1987), S. 130-135 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Production of cephamycin and clavulanic acid by Streptomyces clavuligerus is controlled by the phosphate concentration. Phosphate represses the biosynthesis of “cephamycin synthetase”, expandase and “clavulanic acid synthetase”. In the presence of 2 mM phosphate, the specific activities of expandase, “cephamycin synthetase” and “clavulanic acid synthetase” were higher than in the presence of 75 mM phosphate. The specific activity of cephamycin synthetase is maximal with an initial phosphate concentration of 10 mM, whereas the specific activity of expandase is maximal with 1 mM phosphate. A correlation between cephamycin synthetase specific activity and expandase specific activity was established at phosphate concentrations higher than 10 mM. This shows that the expandase is an important enzyme in the mechanism by which the phosphate concentration affects the biosynthesis of cephamycin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 35 (1991), S. 253-257 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The production of cephamycin C by Streptomyces cattleya varies with the use of asparagine, glutamine or ammonium as nitrogen sources. hydroxylase and expandase activities were demonstrated for the first time with this species. A study of the biosynthetic regulation of these enzymes by two different nitrogen sources, glutamine and asparagine, was carried out. Asparagine proved to be a better nitrogen source, both for enzymatic biosynthesis and production of cephamycin C. Moreover, an excess of asparagine in the culture environment provokes, simultaneously, a reduction in cephamycin C production and a decrease in the biosynthesis of expandase and hydroxylase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The addition of short-chain fatty acids stimulates the production of spiramycin by Streptomyces ambofaciens cultivated on dextrins and ammonium chloride. The fatty acids were activated by two enzymatic systems. The first system (acyl-CoA synthetases) was present only during the exponential phase. The second system (acylkinases coupled with acylphosphotransferases) was synthesized during the growth phase and during the stationary phase, in which spiramycin production started. Short-chain fatty acids induced the synthesis of acylkinases and acylphosphotransferases. Added at the beginning of cultures, they increased the specific activity of these enzymes during the exponential growth phase. Added at the early stationary phase, the specific activity of these enzymes and of the spiramycin production increased. Excess ammonium in the culture considerably lowered the specific activity of acylkinases synthesized in the stationary phase, when spiramycin productiin started. This ammonium effect can be reduced by the addition of short-chain fatty acids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Spiramycin production byStreptomyces ambofaciens is controlled by the nitrogen source present in the culture medium. Thus, amino acids according to the mode of catabolism (transamination or deamination) influenced the spiramycin production differently. Arginine, whose catabolism led to an important excretion of ammonium, gave a slight spiramycin production of 5.3 mg. g−1 dry cell weight; however, the introduction of an ammonium trapping agent [0.25% Mg3(PO4)2] enhanced spiramycin production by 415%. The use of a neutral culture medium showed the existence of a critical phase during which the ammonium pulse had maximum negative effects on spiramycin production. Among these negative effects, the ammonium pulse provoked an increase in the growth rate, which was partially responsible for the decrease of the spiramycin production. The inhibitory effects of ammonium on spiramycin production were mitigated when the growth rate was controlled by the phosphate concentration. In addition, protease activities were limited on a culture medium in which ammonium was present and spiramycin production was null, whereas on lysine, where spiramycin production was favored, protease activities were higher.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Spiramycin production was highly stimulated when lysine was used as the sole nitrogen source. This amino acid was catabolized by the α-transaminase pathway characterized by dosage of cadaverine aminotransferase (CAT) enzyme. The Kmcadaverine was of 57mM. CAT was highly induced by lysine (634% in comparison with ammonium). Addition of 40mm of ammonium in a culture begun with 20mm of lysine as the sole initial nitrogen source repressed CAT biosynthesis by 24% but did not affect spiramycin production seriously. Addition of 20mm of lysine in a culture started with 40mm ammonium induced CAT biosynthesis of 425%, but did not allow spiramycin production. In these two cases, spiramycin production seems to be conditioned by the nitrogen source initially present in the culture medium. CAT activity was inhibited by ammonium ions (33% at 20mm), whereas lysine had no effects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Carnobacterium piscicola CP5, isolated from a French mold-ripened soft cheese, produced a bacteriocin activity named carnocin CP5, which inhibited Carnobacterium, Enterococcus and Listeria spp. strains, and among the Lactobacillus spp. only Lactobacillus delbrueckii spp. [24]. The activity was purified by ammonium sulfate precipitation, anion exchange, and hydrophobic interaction chromatography followed by reverse-phase high-performance liquid chromatography (RP-HPLC). This latter step separated two peaks with anti-listerial activity (CP51 and CP52). Carnocin CP51 was partially sequenced, and the N-terminal part revealed the presence of the “pediocin-like consensus” sequence-Tyr-Gly-Asn-Gly-Val-. Then, a degenerated 24-mer oligonucleotide probe was constructed from the N-terminal sequence and used to detect the structural gene. It was localized on a plasmid of about 40 kb. Cloning of restriction fragments of this one, followed by DNA sequencing, revealed the presence of the second anti-Listeria bacteriocin gene (CP52). By comparing sequences in data banks and confirming results with PCR reactions, carnocin CP51 shared homologies with carnobacteriocin BM1, and carnocin CP52 was similar to carnobacteriocin B2, both produced by C. piscicola LV17 [2]. However, carnobacteriocin A from C. piscicola LV17 gene was lacking in C. piscicola CP5, and the two microorganisms have been isolated from different ecological environments: C. piscicola CP5 and C. piscicola LV17 were isolated from soft cheese and vacuum-packed meat respectively. This fact could allow different application perspectives for C. piscicola CP5.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Brevicin 27, a bacteriocin produced by Lactobacillus brevis SB27, is inhibitory mainly against closely related Lactobacillus brevis and Lactobacillus büchneri strains. It was purified from the culture supernatant by a four-step purification procedure including ammonium sulfate precipitation, cation exchange, hydrophobic interaction, and reverse-phase, high performance liquid chromatographies. The purified bacteriocin was subjected to mass spectrometry, amino acid composition analysis, and sequencing by Edman degradation. It was shown to be an about 5200-Da basic protein containing a high proportion of lysine and of hydrophobic amino acids. The partial N-terminal amino acid sequence (25 residues) was unique when compared with the Protein Data Bank (PDB), Swiss Prot, and Protein Information Resource (PIR) data banks and to the translated Gen Bank.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...